To enhance the image motion compensation accuracy of off-axis three-mirror anastigmatic( TMA)three-line array aerospace mapping cameras,a new method of image motion velocity field modeling is proposed in this paper. F...To enhance the image motion compensation accuracy of off-axis three-mirror anastigmatic( TMA)three-line array aerospace mapping cameras,a new method of image motion velocity field modeling is proposed in this paper. Firstly,based on the imaging principle of mapping cameras,an analytical expression of image motion velocity of off-axis TMA three-line array aerospace mapping cameras is deduced from different coordinate systems we established and the attitude dynamics principle. Then,the case of a three-line array mapping camera is studied,in which the simulation of the focal plane image motion velocity fields of the forward-view camera,the nadir-view camera and the backward-view camera are carried out,and the optimization schemes for image motion velocity matching and drift angle matching are formulated according the simulation results. Finally,this method is verified with a dynamic imaging experimental system. The results are indicative of that when image motion compensation for nadir-view camera is conducted using the proposed image motion velocity field model,the line pair of target images at Nyquist frequency is clear and distinguishable. Under the constraint that modulation transfer function( MTF) reduces by 5%,when the horizontal frequencies of the forward-view camera and the backward-view camera are adjusted uniformly according to the proposed image motion velocity matching scheme,the time delay integration( TDI) stages reach 6 at most. When the TDI stages are more than 6,the three groups of camera will independently undergo horizontal frequency adjustment. However, when the proposed drift angle matching scheme is adopted for uniform drift angle adjustment,the number of TDI stages will not exceed 81. The experimental results have demonstrated the validity and accuracy of the proposed image motion velocity field model and matching optimization scheme,providing reliable basis for on-orbit image motion compensation of aerospace mapping cameras.展开更多
It is difficult but important to get clear information from the low illumination images. In recent years the research of the low illumination image enhancement has become a hot topic in image processing and computer v...It is difficult but important to get clear information from the low illumination images. In recent years the research of the low illumination image enhancement has become a hot topic in image processing and computer vision. The Retinex algorithm is one of the most popular methods in the field and uniform illumination is necessary to enhance low illumination image quality by using this algorithm. However, for the different areas of an image with contrast brightness differences, the illumination image is not smooth and causes halo artifacts so that it cannot retain the detail information of the original images. To solve the problem, we generalize the multi-scale Retinex algorithm and propose a new enhancement method for the low illumination images based on the microarray camera. The proposed method can well make up for the deficiency of imbalanced illumination and significantly inhibit the halo artifacts as well. Experimental results show that the proposed method can get better image enhancement effect compared to the multi-scale Retinex algorithm of a single image enhancement. Advantages of the method also include that it can significantly inhibit the halo artifacts and thus retain the details of the original images, it can improve the brightness and contrast of the image as well. The newly developed method in this paper has application potential to the images captured by pad and cell phone in the low illumination environment.展开更多
A new compact gamma camera for small object imaging has been developed.It consists of a pixelized Nal(T1) scintillator array coupled to a position sensitive photomultiplier tube (Hamamatsu R2486) with a parallel-hole ...A new compact gamma camera for small object imaging has been developed.It consists of a pixelized Nal(T1) scintillator array coupled to a position sensitive photomultiplier tube (Hamamatsu R2486) with a parallel-hole lead collimator.The compact camera has better spatial resolution than Anger camera.The average value of intrinsic spatial resolutions is 2.3 mm (FWHM).The overall spatial resolution (FWHM) is 3,5 and 6 mm at 0,2.5 and 3 mm SCD (source-to-collimator distance),respectively.The phantom studies with the compact camera have demonstrated that parallel-hole collimator gamma camera is a practical technique for nuclear medicine application.展开更多
Aiming to solve the problem that it is difficult to accurately measure UV cut-off transmittance of xenon quartz glass by using present spectrophotometer in China SG III project. Through the analysis, we believe that i...Aiming to solve the problem that it is difficult to accurately measure UV cut-off transmittance of xenon quartz glass by using present spectrophotometer in China SG III project. Through the analysis, we believe that its reason was that the xenon quartz glass was nonplanar so the outgoing beam geometry from under-test was different from that from standard sample. A method of transmittance measurement based on focal-plane-array camera was proposed in this article. The effects of camera uniformity and spot sampling on transmittance measurement were analyzed theoretically. This method, which can reduce the effect of beam geometry on transmittance measurement and eliminate the cutting error occurring during light transmission by monitoring the completeness of incident beam in real-time, is verified from experiments. The random standard uncertainty of this method here is 0.035% or less. It is particularly useful in the transmittance measurement of nonplanar optical.展开更多
<div style="text-align:justify;"> Focusing of an area array camera is an important step in making a high precision imaging camera. Its testing method needs special study. In this paper, a method of cam...<div style="text-align:justify;"> Focusing of an area array camera is an important step in making a high precision imaging camera. Its testing method needs special study. In this paper, a method of camera focusing is introduced. The defocusing depth of camera is calculated by using the frequency spectrum of defocused image. This method is especially suitable for the focusing of the Planar Array Camera, and avoids the complicated work of adjusting the focus plane of the planar array camera in the focusing process. </div>展开更多
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution...Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.展开更多
Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calc...Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calculating the sky area visibility distribution via extinction measurement challenging.To address this issue,we propose the Photometry-Free Sky Area Visibility Estimation(PFSAVE)method.This method uses the standard magnitude of the faintest star observed within a given sky area to estimate visibility.By employing a pertransformation refitting optimization strategy,we achieve a high-precision coordinate transformation model with an accuracy of 0.42 pixels.Using the results of HEALPix segmentation is also introduced to achieve high spatial resolution.Comprehensive analysis based on real allsky images demonstrates that our method exhibits higher accuracy than the extinction-based method.Our method supports both manual and robotic dynamic scheduling,especially under partially cloudy conditions.展开更多
The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled p...The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.展开更多
This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground commu...This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.展开更多
Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capa...Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.展开更多
Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of curr...Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.展开更多
This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,an...This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃.展开更多
Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains chall...Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains challenging,primarily because of the rapid crystallization and the susceptibility of Sn^(2+) to oxidation.To ad⁃dress these issues,this study introduces the multifunctional molecules 2,3-difluorobenzenamine(DBM)to modulate the crystallization of Sn-Pb mixed perovskites and retard the oxidation of Sn^(2+),thereby significantly enhancing film quality.Compared with the pristine film,Sn-Pb mixed perovskite films modulated by DBM molecules exhibit a high⁃ly homogeneous morphology,reduced roughness and defect density.The self-powered NIR PDs fabricated with the improved films have a spectral response range from 300 nm to 1100 nm,a peak responsivity of 0.51 A·W^(-1),a spe⁃cific detectivity as high as 2.46×10^(11)Jones within the NIR region(780 nm to 1100 nm),a linear dynamic range ex⁃ceeding 152 dB,and ultrafast rise/fall time of 123/464 ns.Thanks to the outstanding performance of PDs,the fabri⁃cated 5×5 PDs array demonstrates superior imaging ability in the NIR region up to 980 nm.This work advances the development of Sn-Pb mixed perovskites for NIR detection and paves the way for their commercialization.展开更多
A programmable low-profile array antenna based on nematic liquid crystals(NLCs)is proposed.Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a ph...A programmable low-profile array antenna based on nematic liquid crystals(NLCs)is proposed.Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a phase shift exceeding 360°with high linearity.First,the above 64 antenna units are periodically arranged into an 8×8 NLC-based antenna array,and the bias voltage of the NLC-based phase shifter loaded on the antenna unit is adjusted through the control of the field-programmable gate array(FPGA)programming sequences.This configuration enables precise phase changes for all 64 channels.Numerical simulation,sample processing,and experimental measurements of the antenna array are conducted to validate the performance of the antenna.The numerical and experimental results demonstrate that the proposed antenna performs well within the frequency range of 19.5-20.5 GHz,with a 3 dB relative bandwidth of 10%and a maximum main lobe gain of 14.1 dBi.A maximum scanning angle of±34°is achieved through the adjustment of the FPGA programming sequence.This NLC-based programmable array antenna shows promising potential for applications in satellite communication.展开更多
Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the...Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.展开更多
As one of the most promising branches of metasurfaces,metalenses overcome the functional limits of conventional lenses and enable versatile control over light.Their compactness facilitates integration into miniatur-iz...As one of the most promising branches of metasurfaces,metalenses overcome the functional limits of conventional lenses and enable versatile control over light.Their compactness facilitates integration into miniatur-ized optical systems without significantly increasing the footprint.Recent advances in the field are unfolding along two parallel directions:performance enhancement and functional expansion of single metalenses,and architectural development of multi-metalens systems.In this review,we systematically summarize representative progress in both areas,aiming to clarify major unresolved challenges and highlight the most promising directions for future exploration.展开更多
Deconvolution methods are commonly used to improve the performance of phased array beamforming for sound source localization. However, for coherent sources localization, existing deconvolution methods are either highl...Deconvolution methods are commonly used to improve the performance of phased array beamforming for sound source localization. However, for coherent sources localization, existing deconvolution methods are either highly computationally demanding or sensitive to parameters.A deconvolution method, based on modifications of Clean based on Source Coherence(CLEAN-SC), is proposed for coherent sources localization. This method is called Coherence CLEAN-SC(C–CLEAN-SC). C–CLEAN-SC is able to locate coherent and incoherent sources in simulation and experimental cases. It has a high computational efficiency and does not require pre-set parameters.展开更多
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.863-2-5-1-13B)the Jilin Province Science and Technology Development Plan Item(Grant No.20130522107JH)
文摘To enhance the image motion compensation accuracy of off-axis three-mirror anastigmatic( TMA)three-line array aerospace mapping cameras,a new method of image motion velocity field modeling is proposed in this paper. Firstly,based on the imaging principle of mapping cameras,an analytical expression of image motion velocity of off-axis TMA three-line array aerospace mapping cameras is deduced from different coordinate systems we established and the attitude dynamics principle. Then,the case of a three-line array mapping camera is studied,in which the simulation of the focal plane image motion velocity fields of the forward-view camera,the nadir-view camera and the backward-view camera are carried out,and the optimization schemes for image motion velocity matching and drift angle matching are formulated according the simulation results. Finally,this method is verified with a dynamic imaging experimental system. The results are indicative of that when image motion compensation for nadir-view camera is conducted using the proposed image motion velocity field model,the line pair of target images at Nyquist frequency is clear and distinguishable. Under the constraint that modulation transfer function( MTF) reduces by 5%,when the horizontal frequencies of the forward-view camera and the backward-view camera are adjusted uniformly according to the proposed image motion velocity matching scheme,the time delay integration( TDI) stages reach 6 at most. When the TDI stages are more than 6,the three groups of camera will independently undergo horizontal frequency adjustment. However, when the proposed drift angle matching scheme is adopted for uniform drift angle adjustment,the number of TDI stages will not exceed 81. The experimental results have demonstrated the validity and accuracy of the proposed image motion velocity field model and matching optimization scheme,providing reliable basis for on-orbit image motion compensation of aerospace mapping cameras.
基金Supported by National Science and Technology Major Project(2014ZX02502003The National Natural Science Foundation of China(61170327)
文摘It is difficult but important to get clear information from the low illumination images. In recent years the research of the low illumination image enhancement has become a hot topic in image processing and computer vision. The Retinex algorithm is one of the most popular methods in the field and uniform illumination is necessary to enhance low illumination image quality by using this algorithm. However, for the different areas of an image with contrast brightness differences, the illumination image is not smooth and causes halo artifacts so that it cannot retain the detail information of the original images. To solve the problem, we generalize the multi-scale Retinex algorithm and propose a new enhancement method for the low illumination images based on the microarray camera. The proposed method can well make up for the deficiency of imbalanced illumination and significantly inhibit the halo artifacts as well. Experimental results show that the proposed method can get better image enhancement effect compared to the multi-scale Retinex algorithm of a single image enhancement. Advantages of the method also include that it can significantly inhibit the halo artifacts and thus retain the details of the original images, it can improve the brightness and contrast of the image as well. The newly developed method in this paper has application potential to the images captured by pad and cell phone in the low illumination environment.
基金Supported by National Natural Science Foundation of China (No.10275063)
文摘A new compact gamma camera for small object imaging has been developed.It consists of a pixelized Nal(T1) scintillator array coupled to a position sensitive photomultiplier tube (Hamamatsu R2486) with a parallel-hole lead collimator.The compact camera has better spatial resolution than Anger camera.The average value of intrinsic spatial resolutions is 2.3 mm (FWHM).The overall spatial resolution (FWHM) is 3,5 and 6 mm at 0,2.5 and 3 mm SCD (source-to-collimator distance),respectively.The phantom studies with the compact camera have demonstrated that parallel-hole collimator gamma camera is a practical technique for nuclear medicine application.
文摘Aiming to solve the problem that it is difficult to accurately measure UV cut-off transmittance of xenon quartz glass by using present spectrophotometer in China SG III project. Through the analysis, we believe that its reason was that the xenon quartz glass was nonplanar so the outgoing beam geometry from under-test was different from that from standard sample. A method of transmittance measurement based on focal-plane-array camera was proposed in this article. The effects of camera uniformity and spot sampling on transmittance measurement were analyzed theoretically. This method, which can reduce the effect of beam geometry on transmittance measurement and eliminate the cutting error occurring during light transmission by monitoring the completeness of incident beam in real-time, is verified from experiments. The random standard uncertainty of this method here is 0.035% or less. It is particularly useful in the transmittance measurement of nonplanar optical.
文摘<div style="text-align:justify;"> Focusing of an area array camera is an important step in making a high precision imaging camera. Its testing method needs special study. In this paper, a method of camera focusing is introduced. The defocusing depth of camera is calculated by using the frequency spectrum of defocused image. This method is especially suitable for the focusing of the Planar Array Camera, and avoids the complicated work of adjusting the focus plane of the planar array camera in the focusing process. </div>
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
基金financial supports from National Natural Science Foundation of China(Grant Nos.U23A20368 and 62175006)Academic Excellence Foundation of BUAA for PhD Students.
文摘Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.
基金supported by Natural Science Foundation of Jilin Province(20210101468JC)Chinese Academy of Sciences and Local Government Cooperation Project(2023SYHZ0027,23SH04)National Natural Science Foundation of China(12273063&12203078)。
文摘Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calculating the sky area visibility distribution via extinction measurement challenging.To address this issue,we propose the Photometry-Free Sky Area Visibility Estimation(PFSAVE)method.This method uses the standard magnitude of the faintest star observed within a given sky area to estimate visibility.By employing a pertransformation refitting optimization strategy,we achieve a high-precision coordinate transformation model with an accuracy of 0.42 pixels.Using the results of HEALPix segmentation is also introduced to achieve high spatial resolution.Comprehensive analysis based on real allsky images demonstrates that our method exhibits higher accuracy than the extinction-based method.Our method supports both manual and robotic dynamic scheduling,especially under partially cloudy conditions.
基金supported by Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2021ZT16),China.
文摘The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.
基金supported by the National Natural Science Foundation of China(No.62371080 and 62031006)the National Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0597)the Venture&Innovation Support Program for Chongqing Overseas Returnees,China(No.cx2022063)。
文摘This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.
基金the financial support from the National Key Research and Development Program of China(No.2023YFB3907001)the National Natural Science Foundation of China(Nos.U2233217,62371029)the UK Engineering and Physical Sciences Research Council(EPSRC),China(Nos.EP/M026981/1,EP/T021063/1 and EP/T024917/)。
文摘Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.
文摘Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.
基金Supported by the Fundamental Research Funds for the Central Universities(2024300443)the Natural Science Foundation of Jiangsu Province(BK20241224).
文摘This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃.
基金Supported by National Key Research and Development Program of China(2022YFA1404201)National Natural Science Foundation of China(62205187,U23A20380,U22A2091,62222509,62127817,62075120)+3 种基金Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT_17R70)Fundamental Research Program of Shanxi Province(202103021223032,202303021222031)Project Funded by China Postdoctoral Science Foundation(2022M722006)Fund for Shanxi“1331 Project”Key Subjects Construction。
文摘Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains challenging,primarily because of the rapid crystallization and the susceptibility of Sn^(2+) to oxidation.To ad⁃dress these issues,this study introduces the multifunctional molecules 2,3-difluorobenzenamine(DBM)to modulate the crystallization of Sn-Pb mixed perovskites and retard the oxidation of Sn^(2+),thereby significantly enhancing film quality.Compared with the pristine film,Sn-Pb mixed perovskite films modulated by DBM molecules exhibit a high⁃ly homogeneous morphology,reduced roughness and defect density.The self-powered NIR PDs fabricated with the improved films have a spectral response range from 300 nm to 1100 nm,a peak responsivity of 0.51 A·W^(-1),a spe⁃cific detectivity as high as 2.46×10^(11)Jones within the NIR region(780 nm to 1100 nm),a linear dynamic range ex⁃ceeding 152 dB,and ultrafast rise/fall time of 123/464 ns.Thanks to the outstanding performance of PDs,the fabri⁃cated 5×5 PDs array demonstrates superior imaging ability in the NIR region up to 980 nm.This work advances the development of Sn-Pb mixed perovskites for NIR detection and paves the way for their commercialization.
基金The National Natural Science Foundation of China(No.62401168,62401139,62401170)China Postdoctoral Science Foundation(No.2023MD744197)+2 种基金Postdoctoral Fellowship Program of CPSF(No.GZC20230631)Project for Enhancing Young and Middle-aged Teacher’s Research Basis Ability in Colleges of Guangxi(No.2023KY0218)Guangxi Key Laboratory Foundation of Optoelectronic Information Processing(No.GD23102)。
文摘A programmable low-profile array antenna based on nematic liquid crystals(NLCs)is proposed.Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a phase shift exceeding 360°with high linearity.First,the above 64 antenna units are periodically arranged into an 8×8 NLC-based antenna array,and the bias voltage of the NLC-based phase shifter loaded on the antenna unit is adjusted through the control of the field-programmable gate array(FPGA)programming sequences.This configuration enables precise phase changes for all 64 channels.Numerical simulation,sample processing,and experimental measurements of the antenna array are conducted to validate the performance of the antenna.The numerical and experimental results demonstrate that the proposed antenna performs well within the frequency range of 19.5-20.5 GHz,with a 3 dB relative bandwidth of 10%and a maximum main lobe gain of 14.1 dBi.A maximum scanning angle of±34°is achieved through the adjustment of the FPGA programming sequence.This NLC-based programmable array antenna shows promising potential for applications in satellite communication.
基金supported by China National Science Foundations(Nos.62371225,62371227)。
文摘Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.
基金support from the University Grants Committee/Research Grants Council of the Hong Kong Special Administrative Region,China[Project No.AoE/P-502/20,CRF Project:C5031-22G,GRF Project:CityU15303521,CityU11305223,CityU11300224]City University of Hong Kong[Project No.9380131,7005867]National Natural Science Foundation of China[Grant No.62375232].
文摘As one of the most promising branches of metasurfaces,metalenses overcome the functional limits of conventional lenses and enable versatile control over light.Their compactness facilitates integration into miniatur-ized optical systems without significantly increasing the footprint.Recent advances in the field are unfolding along two parallel directions:performance enhancement and functional expansion of single metalenses,and architectural development of multi-metalens systems.In this review,we systematically summarize representative progress in both areas,aiming to clarify major unresolved challenges and highlight the most promising directions for future exploration.
基金supported by the National Science and Technology Major Project of China (No. 2017-II-003–0015)。
文摘Deconvolution methods are commonly used to improve the performance of phased array beamforming for sound source localization. However, for coherent sources localization, existing deconvolution methods are either highly computationally demanding or sensitive to parameters.A deconvolution method, based on modifications of Clean based on Source Coherence(CLEAN-SC), is proposed for coherent sources localization. This method is called Coherence CLEAN-SC(C–CLEAN-SC). C–CLEAN-SC is able to locate coherent and incoherent sources in simulation and experimental cases. It has a high computational efficiency and does not require pre-set parameters.