All-vertical-piled wharf is a kind of high-piled wharf, but it is extremely different from the traditional ones in some aspects, such as the structural property, bearing characteristics, failure mechanism, and static ...All-vertical-piled wharf is a kind of high-piled wharf, but it is extremely different from the traditional ones in some aspects, such as the structural property, bearing characteristics, failure mechanism, and static or dynamic calculation methods. In this paper, the finite element method (FEM) and theoretical analysis method are combined to analyze the structural property, bearing behavior and failure mode of the all-vertical-piled wharf in offshore deep water, and to establish simplified calculation methods determining the horizontal static ultimate bearing capacity and the dynamic response for the all-vertical-piled wharf. Firstly, the bearing capability and failure mechanism for all-vertical-piled wharf are studied by use of FEM, and the failure criterion is put forward for all-vertical-piled wharf based on the 'plastic hinge'. According to the failure criterion and P-Y curve method, the simplified calculation method of the horizontal static ultimate bearing capacity for all-vertical-piled wharf is proposed, and it is verified that the simplified method is reasonable by comparison with the FEM. Secondly, the displacement dynamic magnification factor for the all-vertical-piled wharf under wave cyclic loads and ship impact loads is calculated by the FEM and the theory formula based on the single degree of freedom (SDOF) system. The results obtained by the two methods are in good agreement with each other, and the simplified calculation method of the displacement dynamic magnification factor for all-vertical-piled wharf under dynamic loads is proposed. Then the simplified calculation method determining the dynamic response for the all-vertical-piled wharf is proposed in combination with P-Y curve method. That is, the dynamic response of the structure can be obtained through the static calculation results of P-Y curve method multiplied by the displacement dynamic magnification factor. The feasibility of the simplified dynamic response method is verified by comparison with the FEM under different conditions.展开更多
In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, t...In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.展开更多
In order to investigate the calculation methods on crack resistance capacity of connection composed of cross shaped steel encased ultra high strength concrete (CSSEUHSC) columns and steel encased concrete (SEC) beams ...In order to investigate the calculation methods on crack resistance capacity of connection composed of cross shaped steel encased ultra high strength concrete (CSSEUHSC) columns and steel encased concrete (SEC) beams under cycle loads, six interior connection specimens were tested in the laboratory. A discussion on the crack resistance capacity was presented. Calculation methods of crack resistance capacity were deduced based on the experimental case and calculation results were in good agreement with the experimental results. The research results indicated that parameters of connection composed of CSSEUHSC columns and SEC beams with better crack resistance performance may be referred for engineering application.展开更多
Measurement of the volume of gas adsorbed per unit mass of coal with increasing pressure at a constant temperature produces an isotherm that describes the gas storage capacity of this type of coal. The accurate testin...Measurement of the volume of gas adsorbed per unit mass of coal with increasing pressure at a constant temperature produces an isotherm that describes the gas storage capacity of this type of coal. The accurate testing and interpretation of coal sorption isotherm plays an important role in the areas of coal mine methane drainage, coalbed methane (CBM) reservoir resource assessment, enhanced coalbed methane (ECBM) recovery, as well as the carbon dioxide (CO2) sequestration in deep coal seams or similar geological formations. Different coal sorption isotherm testing apparatus and associated calculation methods are critically reviewed and presented in this paper. These include both volumetric and gravimetric based methods, as well as experimental sorption tests with confining stress and direction sorption methods. The volumetric techniques utilise experimental apparatus with sample cell and injection pump and that with both sample cell and reference cell. Whilst the gravimetric approachesinclude methods with sample cell and suspension magnetic balance and that with both sample cell and reference cell. Different testing methods are compared and discussed in this study. A unique in-house-built coal sorption isotherm testing apparatus at the University of Wollongong was presented together with the calculation method, procedures and experimental results. The isotherm results can be calculated by both Soave-Redlich-Kwong (SRK) equation and calibration cure methods which can be used directly to convert the volume of adsorbed gas in different test conditions to standard condition (NTP).展开更多
Reference crop evapotranspiration (ET_0) is a critical part in water cycle and water balance of ecosystem, which is greatly important to effective utilization of agricultural water resources and for making reasonable ...Reference crop evapotranspiration (ET_0) is a critical part in water cycle and water balance of ecosystem, which is greatly important to effective utilization of agricultural water resources and for making reasonable irrigation system. In order to propose a suitable method for computing ET_0 in North Xinjiang, based on daily meteorological data from May 1 to September30, 2010 provided by Weather Station of Fuhai County, we used FAO56 Penman-Monteith as the standard formula to compute ET_0, compared the differences and relations between such the method and other 4 calculation formulas, and analyzed the cause of the deviation, finally evaluated the applicability of computational method in North Xinjiang. The results showed that the calculation results by FA056 PM Method was approximate to that by FAO Penman method and IA method, of which the relative error was 9.26% and 13.51% respectively, the ET_0 results calculated by PT method and HS method were generally greater than the results by FAO56 PM, and their deviation was very obvious.展开更多
Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing ...Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing waves or currents in the ocean. By analyzing the domestic and international norms, this study <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">pre<span style="font-family:Verdana;font-size:12px;">sents a review of calculation methods of wind load on ocean platforms, which <span style="letter-spacing:-0.15pt;font-family:Verdana;font-size:12px;">belongs to large-scale non-entity structure used in the open sea while sur<span style="font-family:Verdana;font-size:12px;">round<span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ing wind has no fixed direction. Current computations according to the<span style="font-family:Verdana;font-size:12px;"> norms are not accurate, which even not takes the force of the wind against the surf<span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ace perpendicular to the structure into consideration. Additionally, thi<span style="font-family:Verdana;font-size:12px;">s study also introduces and compares the lift model of platforms based on different <span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">theories, such as vortex-excitation and vibration, engineering structure dy<span style="font-family:Verdana;font-size:12px;">namics, gas flow pressure theory, analyzing their applicability, advantages, and disadvantages. This paper analyzes the limitations and applicable conditions of the existing calculation method itself, such as the lift model is suitable for the existence of stable vortex wake;the calculation method of the structural dynamics of marine engineering must be combined with the wind tunnel test and consider the mistakes caused by the position relationship;the numerical simulation method is accurate but tedious. This study provides an insight into the calculation methods of lift in designing ocean platforms, including the <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">finite element method for simulating fluid force and updating formulas in<span style="font-family:Verdana;font-size:12px;"> Chinese norms.展开更多
Estimation of water content is the foundation of natural gas processing and designing,and a formula calculation method provides a solution simple and easy to be programmed by computers.In this regard,several main form...Estimation of water content is the foundation of natural gas processing and designing,and a formula calculation method provides a solution simple and easy to be programmed by computers.In this regard,several main formula calculation methods of water content in sweet natural gas were reviewed and evaluated individually.There are formulas fitted with nomographic data(e.g.Sloan formula,Ning Yingnan formula,Khaled formula and Bahadori formula),empirical formulas fitted with experimental data(e.g.Zhu Lin formula,Behr formula and Kazim formula)and formulas generated based on water-hydrocarbon phases equilibrium(e.g.Saturated Vapor Pressure Model,Modified Ideal Model,Simplified Thermodynamic Model and Bukacek formula).The comparison of calculated and experimental values of each above formula calculation method indicates that,the Khaled formula provided the minimum average absolute deviation(AAD)–2.5240%,while the Behr method achieved the maximum AAD–19.255%.After the analysis of the AAD results calculated by the methods at different temperature ranges,the Zhu Lin formula is recommended for−50 to−40℃,the Sloan formula for−40 to 0℃,the Simplified Thermodynamic Model for 0 to 37.78°C,the Khaled formula for 37.78 to 171.11℃,and the Bukacek formula for 171.11 to 237.78℃.展开更多
Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a t...Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a three-impulse contingency return trajectory scheme is presented by combining the Lambert transfer and maneuver at the special point.Secondly,a calculation model of three-impulse contingency return trajectories is established.Then,fast calculation methods are proposed by adopting the high-order Taylor expansion of differential algebra in the twobody trajectory dynamics model and perturbed trajectory dynamics model.Finally,the performance of the proposed methods is verified by numerical simulation.The results indicate that the fast calculation method of two-body trajectory has higher calculation efficiency compared to the semi-analytical calculation method under a certain accuracy condition.Due to its high efficiency,the characteristics of the three-impulse contingency return trajectories under different contingency scenarios are further analyzed expeditiously.These findings can be used for the design of contingency return trajectories in future manned lunar landing missions.展开更多
This article reviews the application and progress of deep learning in efficient numerical computing methods.Deep learning,as an important branch of machine learning,provides new ideas for numerical computation by cons...This article reviews the application and progress of deep learning in efficient numerical computing methods.Deep learning,as an important branch of machine learning,provides new ideas for numerical computation by constructing multi-layer neural networks to simulate the learning process of the human brain.The article explores the application of deep learning in solving partial differential equations,optimizing problems,and data-driven modeling,and analyzes its advantages in computational efficiency,accuracy,and adaptability.At the same time,this article also points out the challenges faced by deep learning numerical computation methods in terms of computational efficiency,interpretability,and generalization ability,and proposes strategies and future development directions for integrating with traditional numerical methods.展开更多
The gravitational wave background(GWB) produced by extreme-mass-ratio inspirals(EMRIs) serves as a powerful tool for probing the astrophysical and dynamical processes in galactic centers. EMRI systems are a primary ta...The gravitational wave background(GWB) produced by extreme-mass-ratio inspirals(EMRIs) serves as a powerful tool for probing the astrophysical and dynamical processes in galactic centers. EMRI systems are a primary target for the space-based detector laser interferometer space antenna due to their long-lived signals and high signal-to-noise ratios. This study explores the statistical properties of the GWB from EMRI, focusing on the calculation methods for the GWB, the astrophysical distribution of EMRI sources, and the influence of key parameters, including the spin of supermassive black holes(SMBHs) and the masses of compact objects(COs). By analyzing these factors, we determine the distribution range of the characteristic strain of the GWB from EMRIs. We find that the final eccentricity distributions appear to have negligible effect on the intensity of the GWB due to rapid circularization before they become detectable and the spin of the SMBH enhances the gravitational wave characteristic strain by approximately 1% compared to cases without spin effects. The masses of COs can also significantly affect the characteristic strain of the GWB from EMRIs, with black hole as CO producing a gravitational wave signal intensity that is approximately one order of magnitude higher compared to cases where neutron star or white dwarf are the COs.展开更多
Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement...Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement of general concept and conventional calculation method of the poverty incidence, the calculation method of poverty incidence in the exit evaluation of poverty-stricken counties (also including poverty-stricken township and poverty-stricken villages) was investigated through the view of the third-party evaluation. In addition to considering the previous "number of planned poverty remaining population", the method also needed to give consideration to the exiting mistaken population, evaluation missing population. Based on the case in Yuanyang County, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, the poverty incidences of 10 exit planning villages by the end of 2017 in Yuanyang County were investigated and estimated, and suggestions were proposed to promote the precise poverty alleviation and poverty relief of the county.展开更多
To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and...To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and sc is the peak strength),extensive UC and uniaxial graded cyclical loading-unloading(GCLU)tests were performed on four rock types.In the GCLU tests,four unloading stress levels were designated when σ<0.9σc and six unloading stress levels were designated forσ≥0.9σc.The variations in the elastic energy density(ue),dissipative energy density(ud),and energy storage efficiency(C)for the four rock types under GCLU tests were analyzed.Based on the variation of ue whenσ≥0:9σc,a method for calculating the peak energy density was proposed.The energy evolution in rock under UC condition before the post-peak stage was examined.The relationship between C0.9(C atσ≥0:9σc)and mechanical behavior of rocks was explored,and the damage evolution of rock was analyzed in view of energy.Compared with that of the three existing methods,the accuracy of the calculation method of peak energy density proposed in this study is higher.These findings could provide a theoretical foundation for more accurately revealing the failure behavior of rock from an energy perspective.展开更多
This study conducted shear resistance tests on steel-UHPC composite beams,focusing on structural stiffness changes during the test process,strain analysis of UHPC panels,internal reinforcement bars,steel structures,an...This study conducted shear resistance tests on steel-UHPC composite beams,focusing on structural stiffness changes during the test process,strain analysis of UHPC panels,internal reinforcement bars,steel structures,and shear connectors,as well as the failure processes and modes of UHPC panels and the structure.Through theoretical analysis,the contribution of UHPC panels to the overall vertical shear resistance capability was clarified.A shear load-bearing capacity calculation method was established,thereby considering the combined beam shear bearing capacity calculation formula of the UHPC panel and the steel beam web.展开更多
The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of dril...The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.展开更多
Debris flows are the one type of natural disaster that is most closely associated with hu- man activities. Debris flows are characterized as being widely distributed and frequently activated. Rainfall is an important ...Debris flows are the one type of natural disaster that is most closely associated with hu- man activities. Debris flows are characterized as being widely distributed and frequently activated. Rainfall is an important component of debris flows and is the most active factor when debris flows oc- cur. Rainfall also determines the temporal and spatial distribution characteristics of the hazards. A reasonable rainfall threshold target is essential to ensuring the accuracy of debris flow pre-warning. Such a threshold is important for the study of the mechanisms of debris flow formation, predicting the characteristics of future activities and the design of prevention and engineering control measures. Most mountainous areas have little data regarding rainfall and hazards, especially in debris flow forming re- gions. Therefore, both the traditional demonstration method and frequency calculated method cannot satisfy the debris flow pre-warning requirements. This study presents the characteristics of pre-warning regions, included the rainfall, hydrologic and topographic conditions. An analogous area with abundant data and the same conditions as the pre-warning region was selected, and the rainfall threshold was calculated by proxy. This method resolved the problem of debris flow pre-warning in ar- eas lacking data and provided a new approach for debris flow pre-warning in mountainous areas.展开更多
The model established in this paper for calculating the unsteady temperature field, in which physical parameters varies with temperatures, is simplified as compared with the classical one by defining the heat conducti...The model established in this paper for calculating the unsteady temperature field, in which physical parameters varies with temperatures, is simplified as compared with the classical one by defining the heat conductivity as function of temperature and dealing with the latent heat of phase transformation and boundary conditions. The results show that the probability of absolute error less 2℃ between the calculated and measured values in temperature field calculation reaches above 80%.展开更多
A basic calculation procedure for the MOSMO method under CNDO/2 approximation is presented in this paper,and performed by using the same parameters as those used in the ordinary CNDO/2 LCAO-MO calculation.The calculat...A basic calculation procedure for the MOSMO method under CNDO/2 approximation is presented in this paper,and performed by using the same parameters as those used in the ordinary CNDO/2 LCAO-MO calculation.The calculated results on the whole are close to those obtained by use of the ordinary CNDO/2 LCAO-MO calculation,illustrating that the presented procedure is reasonable.Due to its simplicity,the presented calculation procedure may be feasible even in very large molecular s ystems.展开更多
The method to predict roll deformation precisely and efficiently is vital for the strip shape control of a six-high rolling mill. Traditional calculation methods of roll deformation, such as the finite element method ...The method to predict roll deformation precisely and efficiently is vital for the strip shape control of a six-high rolling mill. Traditional calculation methods of roll deformation, such as the finite element method and the influence function method, have been widely used due to their accuracies. However, the required calculation time is too long to be applied to the realtime control. Therefore, a rapid calculation method for predicting roll deformation of a six-high rolling mill was proposed, which employed the finite difference method to calculate the roll deflection and used a polynomial to describe the nonlinear relationship between roll flattening and roll contact pressure. Furthermore, a new correction strategy was proposed in the iteration, where the roll center flattening and the roll flattening deviation were put forward and corrected simultaneously in the iteration process according to the static equilibrium of roll. Finally, by the comparison with traditional methods, the proposed method was proved to be more efficient and it was suitable for the online calculation of the strip shape control.展开更多
There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly aff...There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.展开更多
Three individual peaks of thermal solid-state reaction processes of the synthesized Mn0.90Co0.05Mg0.05HPO4?3H2O were observed corresponding to dehydration I,dehydration II and polycondensation processes.An alternative...Three individual peaks of thermal solid-state reaction processes of the synthesized Mn0.90Co0.05Mg0.05HPO4?3H2O were observed corresponding to dehydration I,dehydration II and polycondensation processes.An alternative method for the calculation of the extent of conversion was proposed from the peak area of the individual DTG peak after applying the best fitting deconvolution function(Frazer–Suzuki function).An iterative integral isoconversional equation was used to compute the values of the apparent activation energy Eαand they were found to be 65.87,78.16 and 119.32 kJ/mol for three peaks,respectively.Each individual peak was guaranteed to be a single-step kinetic system with its unique kinetic parameters.The reaction mechanism functions were selected by the comparison between experimental and model plots.The results show that the first,second and final individual peaks were two-dimensional diffusion of spherical symmetry(D2),three-dimensional diffusion of spherical symmetry(D3)and contracting cylinder(cylindrical symmetry,R2)mechanisms.Pre-exponential factor values of 3.91×106,1.35×107 and 2.15×107 s?1 were calculated from the Eαvalues and reaction mechanisms.The corresponded standard thermodynamic functions of the transition-state(activated)complexes were determined and found to agree well with the experimental data.展开更多
基金financially supported by the Education Commission Fund of Chongqing(Grant No.KJ1500518)the Science Commission Fund of Chongqing(Grant No.cstc2016jcyjA0123)the Open Fund of Key Laboratory of Regulation Technology for Inland Waterway in Transportation Industry of Chongqing Jiaotong University(Grant No.NHHD-201506)
文摘All-vertical-piled wharf is a kind of high-piled wharf, but it is extremely different from the traditional ones in some aspects, such as the structural property, bearing characteristics, failure mechanism, and static or dynamic calculation methods. In this paper, the finite element method (FEM) and theoretical analysis method are combined to analyze the structural property, bearing behavior and failure mode of the all-vertical-piled wharf in offshore deep water, and to establish simplified calculation methods determining the horizontal static ultimate bearing capacity and the dynamic response for the all-vertical-piled wharf. Firstly, the bearing capability and failure mechanism for all-vertical-piled wharf are studied by use of FEM, and the failure criterion is put forward for all-vertical-piled wharf based on the 'plastic hinge'. According to the failure criterion and P-Y curve method, the simplified calculation method of the horizontal static ultimate bearing capacity for all-vertical-piled wharf is proposed, and it is verified that the simplified method is reasonable by comparison with the FEM. Secondly, the displacement dynamic magnification factor for the all-vertical-piled wharf under wave cyclic loads and ship impact loads is calculated by the FEM and the theory formula based on the single degree of freedom (SDOF) system. The results obtained by the two methods are in good agreement with each other, and the simplified calculation method of the displacement dynamic magnification factor for all-vertical-piled wharf under dynamic loads is proposed. Then the simplified calculation method determining the dynamic response for the all-vertical-piled wharf is proposed in combination with P-Y curve method. That is, the dynamic response of the structure can be obtained through the static calculation results of P-Y curve method multiplied by the displacement dynamic magnification factor. The feasibility of the simplified dynamic response method is verified by comparison with the FEM under different conditions.
基金The National Natural Science Foundation of China(No.51138002)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.201452)the Open Fund of Shanghai Key Laboratory of Engineering Structure Safety(No.2015-KF06)
文摘In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.
基金supported by National Natural Science Foundation of China (Nos. 51168034, 50878037)China Postdoctoral Science Foundation (No. 20100471445)Open Foundation of State Key Laboratory of Coastal and Offshore Engineering(No. LP1015)
文摘In order to investigate the calculation methods on crack resistance capacity of connection composed of cross shaped steel encased ultra high strength concrete (CSSEUHSC) columns and steel encased concrete (SEC) beams under cycle loads, six interior connection specimens were tested in the laboratory. A discussion on the crack resistance capacity was presented. Calculation methods of crack resistance capacity were deduced based on the experimental case and calculation results were in good agreement with the experimental results. The research results indicated that parameters of connection composed of CSSEUHSC columns and SEC beams with better crack resistance performance may be referred for engineering application.
文摘Measurement of the volume of gas adsorbed per unit mass of coal with increasing pressure at a constant temperature produces an isotherm that describes the gas storage capacity of this type of coal. The accurate testing and interpretation of coal sorption isotherm plays an important role in the areas of coal mine methane drainage, coalbed methane (CBM) reservoir resource assessment, enhanced coalbed methane (ECBM) recovery, as well as the carbon dioxide (CO2) sequestration in deep coal seams or similar geological formations. Different coal sorption isotherm testing apparatus and associated calculation methods are critically reviewed and presented in this paper. These include both volumetric and gravimetric based methods, as well as experimental sorption tests with confining stress and direction sorption methods. The volumetric techniques utilise experimental apparatus with sample cell and injection pump and that with both sample cell and reference cell. Whilst the gravimetric approachesinclude methods with sample cell and suspension magnetic balance and that with both sample cell and reference cell. Different testing methods are compared and discussed in this study. A unique in-house-built coal sorption isotherm testing apparatus at the University of Wollongong was presented together with the calculation method, procedures and experimental results. The isotherm results can be calculated by both Soave-Redlich-Kwong (SRK) equation and calibration cure methods which can be used directly to convert the volume of adsorbed gas in different test conditions to standard condition (NTP).
基金Supported by Key Scientific and Technological Research and Development Program of Xinjiang(201531115)Special Fund for Scientific Research of China Institute of Water Resources and Hydropower Research(MK2016J10)
文摘Reference crop evapotranspiration (ET_0) is a critical part in water cycle and water balance of ecosystem, which is greatly important to effective utilization of agricultural water resources and for making reasonable irrigation system. In order to propose a suitable method for computing ET_0 in North Xinjiang, based on daily meteorological data from May 1 to September30, 2010 provided by Weather Station of Fuhai County, we used FAO56 Penman-Monteith as the standard formula to compute ET_0, compared the differences and relations between such the method and other 4 calculation formulas, and analyzed the cause of the deviation, finally evaluated the applicability of computational method in North Xinjiang. The results showed that the calculation results by FA056 PM Method was approximate to that by FAO Penman method and IA method, of which the relative error was 9.26% and 13.51% respectively, the ET_0 results calculated by PT method and HS method were generally greater than the results by FAO56 PM, and their deviation was very obvious.
文摘Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing waves or currents in the ocean. By analyzing the domestic and international norms, this study <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">pre<span style="font-family:Verdana;font-size:12px;">sents a review of calculation methods of wind load on ocean platforms, which <span style="letter-spacing:-0.15pt;font-family:Verdana;font-size:12px;">belongs to large-scale non-entity structure used in the open sea while sur<span style="font-family:Verdana;font-size:12px;">round<span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ing wind has no fixed direction. Current computations according to the<span style="font-family:Verdana;font-size:12px;"> norms are not accurate, which even not takes the force of the wind against the surf<span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ace perpendicular to the structure into consideration. Additionally, thi<span style="font-family:Verdana;font-size:12px;">s study also introduces and compares the lift model of platforms based on different <span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">theories, such as vortex-excitation and vibration, engineering structure dy<span style="font-family:Verdana;font-size:12px;">namics, gas flow pressure theory, analyzing their applicability, advantages, and disadvantages. This paper analyzes the limitations and applicable conditions of the existing calculation method itself, such as the lift model is suitable for the existence of stable vortex wake;the calculation method of the structural dynamics of marine engineering must be combined with the wind tunnel test and consider the mistakes caused by the position relationship;the numerical simulation method is accurate but tedious. This study provides an insight into the calculation methods of lift in designing ocean platforms, including the <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">finite element method for simulating fluid force and updating formulas in<span style="font-family:Verdana;font-size:12px;"> Chinese norms.
基金National Natural Science Foundation of China(No.u1262111).
文摘Estimation of water content is the foundation of natural gas processing and designing,and a formula calculation method provides a solution simple and easy to be programmed by computers.In this regard,several main formula calculation methods of water content in sweet natural gas were reviewed and evaluated individually.There are formulas fitted with nomographic data(e.g.Sloan formula,Ning Yingnan formula,Khaled formula and Bahadori formula),empirical formulas fitted with experimental data(e.g.Zhu Lin formula,Behr formula and Kazim formula)and formulas generated based on water-hydrocarbon phases equilibrium(e.g.Saturated Vapor Pressure Model,Modified Ideal Model,Simplified Thermodynamic Model and Bukacek formula).The comparison of calculated and experimental values of each above formula calculation method indicates that,the Khaled formula provided the minimum average absolute deviation(AAD)–2.5240%,while the Behr method achieved the maximum AAD–19.255%.After the analysis of the AAD results calculated by the methods at different temperature ranges,the Zhu Lin formula is recommended for−50 to−40℃,the Sloan formula for−40 to 0℃,the Simplified Thermodynamic Model for 0 to 37.78°C,the Khaled formula for 37.78 to 171.11℃,and the Bukacek formula for 171.11 to 237.78℃.
基金co-supported by the National Natural Science Foundation of China(No.12072365)the Technology Innovation Team of Manned Space Engineering,China。
文摘Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a three-impulse contingency return trajectory scheme is presented by combining the Lambert transfer and maneuver at the special point.Secondly,a calculation model of three-impulse contingency return trajectories is established.Then,fast calculation methods are proposed by adopting the high-order Taylor expansion of differential algebra in the twobody trajectory dynamics model and perturbed trajectory dynamics model.Finally,the performance of the proposed methods is verified by numerical simulation.The results indicate that the fast calculation method of two-body trajectory has higher calculation efficiency compared to the semi-analytical calculation method under a certain accuracy condition.Due to its high efficiency,the characteristics of the three-impulse contingency return trajectories under different contingency scenarios are further analyzed expeditiously.These findings can be used for the design of contingency return trajectories in future manned lunar landing missions.
文摘This article reviews the application and progress of deep learning in efficient numerical computing methods.Deep learning,as an important branch of machine learning,provides new ideas for numerical computation by constructing multi-layer neural networks to simulate the learning process of the human brain.The article explores the application of deep learning in solving partial differential equations,optimizing problems,and data-driven modeling,and analyzes its advantages in computational efficiency,accuracy,and adaptability.At the same time,this article also points out the challenges faced by deep learning numerical computation methods in terms of computational efficiency,interpretability,and generalization ability,and proposes strategies and future development directions for integrating with traditional numerical methods.
基金supported by the National Key R&D Program of China (Grant No. 2020YFC2201400)。
文摘The gravitational wave background(GWB) produced by extreme-mass-ratio inspirals(EMRIs) serves as a powerful tool for probing the astrophysical and dynamical processes in galactic centers. EMRI systems are a primary target for the space-based detector laser interferometer space antenna due to their long-lived signals and high signal-to-noise ratios. This study explores the statistical properties of the GWB from EMRI, focusing on the calculation methods for the GWB, the astrophysical distribution of EMRI sources, and the influence of key parameters, including the spin of supermassive black holes(SMBHs) and the masses of compact objects(COs). By analyzing these factors, we determine the distribution range of the characteristic strain of the GWB from EMRIs. We find that the final eccentricity distributions appear to have negligible effect on the intensity of the GWB due to rapid circularization before they become detectable and the spin of the SMBH enhances the gravitational wave characteristic strain by approximately 1% compared to cases without spin effects. The masses of COs can also significantly affect the characteristic strain of the GWB from EMRIs, with black hole as CO producing a gravitational wave signal intensity that is approximately one order of magnitude higher compared to cases where neutron star or white dwarf are the COs.
文摘Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement of general concept and conventional calculation method of the poverty incidence, the calculation method of poverty incidence in the exit evaluation of poverty-stricken counties (also including poverty-stricken township and poverty-stricken villages) was investigated through the view of the third-party evaluation. In addition to considering the previous "number of planned poverty remaining population", the method also needed to give consideration to the exiting mistaken population, evaluation missing population. Based on the case in Yuanyang County, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, the poverty incidences of 10 exit planning villages by the end of 2017 in Yuanyang County were investigated and estimated, and suggestions were proposed to promote the precise poverty alleviation and poverty relief of the county.
基金the National Natural Science Foundation of China(Grant Nos.52104133 and 52304227)the Postdoctoral Foundation of Henan Province(Grant No.HN2022015)are appreciated.
文摘To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and sc is the peak strength),extensive UC and uniaxial graded cyclical loading-unloading(GCLU)tests were performed on four rock types.In the GCLU tests,four unloading stress levels were designated when σ<0.9σc and six unloading stress levels were designated forσ≥0.9σc.The variations in the elastic energy density(ue),dissipative energy density(ud),and energy storage efficiency(C)for the four rock types under GCLU tests were analyzed.Based on the variation of ue whenσ≥0:9σc,a method for calculating the peak energy density was proposed.The energy evolution in rock under UC condition before the post-peak stage was examined.The relationship between C0.9(C atσ≥0:9σc)and mechanical behavior of rocks was explored,and the damage evolution of rock was analyzed in view of energy.Compared with that of the three existing methods,the accuracy of the calculation method of peak energy density proposed in this study is higher.These findings could provide a theoretical foundation for more accurately revealing the failure behavior of rock from an energy perspective.
文摘This study conducted shear resistance tests on steel-UHPC composite beams,focusing on structural stiffness changes during the test process,strain analysis of UHPC panels,internal reinforcement bars,steel structures,and shear connectors,as well as the failure processes and modes of UHPC panels and the structure.Through theoretical analysis,the contribution of UHPC panels to the overall vertical shear resistance capability was clarified.A shear load-bearing capacity calculation method was established,thereby considering the combined beam shear bearing capacity calculation formula of the UHPC panel and the steel beam web.
基金supported by the National Natural Science Foundation of China(52174003,52374008).
文摘The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.
基金supported by the National Natural Science Foundation of China(Nos.40830742 and 40901007)
文摘Debris flows are the one type of natural disaster that is most closely associated with hu- man activities. Debris flows are characterized as being widely distributed and frequently activated. Rainfall is an important component of debris flows and is the most active factor when debris flows oc- cur. Rainfall also determines the temporal and spatial distribution characteristics of the hazards. A reasonable rainfall threshold target is essential to ensuring the accuracy of debris flow pre-warning. Such a threshold is important for the study of the mechanisms of debris flow formation, predicting the characteristics of future activities and the design of prevention and engineering control measures. Most mountainous areas have little data regarding rainfall and hazards, especially in debris flow forming re- gions. Therefore, both the traditional demonstration method and frequency calculated method cannot satisfy the debris flow pre-warning requirements. This study presents the characteristics of pre-warning regions, included the rainfall, hydrologic and topographic conditions. An analogous area with abundant data and the same conditions as the pre-warning region was selected, and the rainfall threshold was calculated by proxy. This method resolved the problem of debris flow pre-warning in ar- eas lacking data and provided a new approach for debris flow pre-warning in mountainous areas.
文摘The model established in this paper for calculating the unsteady temperature field, in which physical parameters varies with temperatures, is simplified as compared with the classical one by defining the heat conductivity as function of temperature and dealing with the latent heat of phase transformation and boundary conditions. The results show that the probability of absolute error less 2℃ between the calculated and measured values in temperature field calculation reaches above 80%.
文摘A basic calculation procedure for the MOSMO method under CNDO/2 approximation is presented in this paper,and performed by using the same parameters as those used in the ordinary CNDO/2 LCAO-MO calculation.The calculated results on the whole are close to those obtained by use of the ordinary CNDO/2 LCAO-MO calculation,illustrating that the presented procedure is reasonable.Due to its simplicity,the presented calculation procedure may be feasible even in very large molecular s ystems.
基金This work was financially supported by the National Natural Science Foundation of China (51674028), and Fundamental Research Funds for the Central Universities (FRF-IC- 16-001).
文摘The method to predict roll deformation precisely and efficiently is vital for the strip shape control of a six-high rolling mill. Traditional calculation methods of roll deformation, such as the finite element method and the influence function method, have been widely used due to their accuracies. However, the required calculation time is too long to be applied to the realtime control. Therefore, a rapid calculation method for predicting roll deformation of a six-high rolling mill was proposed, which employed the finite difference method to calculate the roll deflection and used a polynomial to describe the nonlinear relationship between roll flattening and roll contact pressure. Furthermore, a new correction strategy was proposed in the iteration, where the roll center flattening and the roll flattening deviation were put forward and corrected simultaneously in the iteration process according to the static equilibrium of roll. Finally, by the comparison with traditional methods, the proposed method was proved to be more efficient and it was suitable for the online calculation of the strip shape control.
基金financially supported by the Major Science and Technology Project of MOT,China(Grant Nos.2013 328 224 070 and 2014 328 224 040)the National Natural Science Foundation of China(Grant No.51409134)
文摘There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.
基金supported by King Mongkut’s Institute of Technology Ladkrabang [KREF146001]
文摘Three individual peaks of thermal solid-state reaction processes of the synthesized Mn0.90Co0.05Mg0.05HPO4?3H2O were observed corresponding to dehydration I,dehydration II and polycondensation processes.An alternative method for the calculation of the extent of conversion was proposed from the peak area of the individual DTG peak after applying the best fitting deconvolution function(Frazer–Suzuki function).An iterative integral isoconversional equation was used to compute the values of the apparent activation energy Eαand they were found to be 65.87,78.16 and 119.32 kJ/mol for three peaks,respectively.Each individual peak was guaranteed to be a single-step kinetic system with its unique kinetic parameters.The reaction mechanism functions were selected by the comparison between experimental and model plots.The results show that the first,second and final individual peaks were two-dimensional diffusion of spherical symmetry(D2),three-dimensional diffusion of spherical symmetry(D3)and contracting cylinder(cylindrical symmetry,R2)mechanisms.Pre-exponential factor values of 3.91×106,1.35×107 and 2.15×107 s?1 were calculated from the Eαvalues and reaction mechanisms.The corresponded standard thermodynamic functions of the transition-state(activated)complexes were determined and found to agree well with the experimental data.