期刊文献+
共找到236篇文章
< 1 2 12 >
每页显示 20 50 100
Grouped machine learning methods for predicting rock mass parameters in a tunnel boring machine-driven tunnel based on fuzzy C-means clustering
1
作者 Ruirui Wang Yaodong Ni +1 位作者 Lingli Zhang Boyang Gao 《Deep Underground Science and Engineering》 2025年第1期55-71,共17页
To guarantee safe and efficient tunneling of a tunnel boring machine(TBM),rapid and accurate judgment of the rock mass condition is essential.Based on fuzzy C-means clustering,this paper proposes a grouped machine lea... To guarantee safe and efficient tunneling of a tunnel boring machine(TBM),rapid and accurate judgment of the rock mass condition is essential.Based on fuzzy C-means clustering,this paper proposes a grouped machine learning method for predicting rock mass parameters.An elaborate data set on field rock mass is collected,which also matches field TBM tunneling.Meanwhile,target stratum samples are divided into several clusters by fuzzy C-means clustering,and multiple submodels are trained by samples in different clusters with the input of pretreated TBM tunneling data and the output of rock mass parameter data.Each testing sample or newly encountered tunneling condition can be predicted by multiple submodels with the weight of the membership degree of the sample to each cluster.The proposed method has been realized by 100 training samples and verified by 30 testing samples collected from the C1 part of the Pearl Delta water resources allocation project.The average percentage error of uniaxial compressive strength and joint frequency(Jf)of the 30 testing samples predicted by the pure back propagation(BP)neural network is 13.62%and 12.38%,while that predicted by the BP neural network combined with fuzzy C-means is 7.66%and6.40%,respectively.In addition,by combining fuzzy C-means clustering,the prediction accuracies of support vector regression and random forest are also improved to different degrees,which demonstrates that fuzzy C-means clustering is helpful for improving the prediction accuracy of machine learning and thus has good applicability.Accordingly,the proposed method is valuable for predicting rock mass parameters during TBM tunneling. 展开更多
关键词 fuzzy c-means clustering machine learning rock mass parameter tunnel boring machine
原文传递
Fuzzy C-Means Algorithm Based on Density Canopy and Manifold Learning
2
作者 Jili Chen Hailan Wang Xiaolan Xie 《Computer Systems Science & Engineering》 2024年第3期645-663,共19页
Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced ... Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced by the random selection of initial cluster centers,and the performance of Euclid distance in complex high-dimensional data is poor.To solve the above problems,the improved FCM clustering algorithm based on density Canopy and Manifold learning(DM-FCM)is proposed.First,a density Canopy algorithm based on improved local density is proposed to automatically deter-mine the number of clusters and initial cluster centers,which improves the self-adaptability and stability of the algorithm.Then,considering that high-dimensional data often present a nonlinear structure,the manifold learning method is applied to construct a manifold spatial structure,which preserves the global geometric properties of complex high-dimensional data and improves the clustering effect of the algorithm on complex high-dimensional datasets.Fowlkes-Mallows Index(FMI),the weighted average of homogeneity and completeness(V-measure),Adjusted Mutual Information(AMI),and Adjusted Rand Index(ARI)are used as performance measures of clustering algorithms.The experimental results show that the manifold learning method is the superior distance measure,and the algorithm improves the clustering accuracy and performs superiorly in the clustering of low-dimensional and complex high-dimensional data. 展开更多
关键词 Fuzzy c-means(FCM) cluster center density canopy ISOMAP clustering
在线阅读 下载PDF
Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss
3
作者 Thanh-Lam Nguyen HaoKao +2 位作者 Thanh-Tuan Nguyen Mong-Fong Horng Chin-Shiuh Shieh 《Computers, Materials & Continua》 SCIE EI 2024年第2期2181-2205,共25页
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i... Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks. 展开更多
关键词 CYBERSECURITY DDoS unknown attack detection machine learning deep learning incremental learning convolutional neural networks(CNN) open-set recognition(OSR) spatial location constraint prototype loss fuzzy c-means CICIDS2017 CICDDoS2019
在线阅读 下载PDF
基于优化模糊C-means算法的不平衡大数据分类研究
4
作者 卓柳俊 曾心怡 《信息技术》 2024年第10期14-21,29,共9页
针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的... 针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的处理方式,定义不平衡阈向量,从而完善整个分类流程,完成基于优化模糊C-means算法的不平衡大数据分类方法的设计。实验结果表明,上述分类方法的应用,可将正例信息、负例信息的取样长度区间完全分离开来,能有效解决因不平衡大数据分类不精准造成的信息样本混淆的问题,符合实际应用需求。 展开更多
关键词 优化模糊c-means算法 不平衡大数据 交叉算子 卡方检验 压缩模糊近邻值
在线阅读 下载PDF
NEW SHADOWED C-MEANS CLUSTERING WITH FEATURE WEIGHTS 被引量:2
5
作者 王丽娜 王建东 姜坚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期273-283,共11页
Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the ... Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the prototype of each cluster. By integrating feature weights, a formula for weight calculation is introduced to the clustering algorithm. The selection of weight exponent is crucial for good result and the weights are updated iteratively with each partition of clusters. The convergence of the weighted algorithms is given, and the feasible cluster validity indices of data mining application are utilized. Experimental results on both synthetic and real-life numerical data with different feature weights demonstrate that the weighted algorithm is better than the other unweighted algorithms. 展开更多
关键词 fuzzy c-means shadowed sets shadowed c-means feature weights cluster validity index
在线阅读 下载PDF
Fuzzy c-means text clustering based on topic concept sub-space 被引量:3
6
作者 吉翔华 陈超 +1 位作者 邵正荣 俞能海 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期439-442,共4页
To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con... To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision. 展开更多
关键词 TCS2FCM topic concept space fuzzy c-means clustering text clustering
在线阅读 下载PDF
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
7
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
在线阅读 下载PDF
基于模糊C-means的多视角聚类算法 被引量:2
8
作者 杨欣欣 黄少滨 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期2128-2133,共6页
目前多数多视角聚类算法属于"刚性"划分算法,不适用于处理具有聚簇重叠结构的数据集,为此,提出一种基于模糊C-means的多视角聚类算法(简称FCM-MVC),该算法利用隶属度描述对象与类别的关系,能够更真实地描述具有聚簇重叠结构... 目前多数多视角聚类算法属于"刚性"划分算法,不适用于处理具有聚簇重叠结构的数据集,为此,提出一种基于模糊C-means的多视角聚类算法(简称FCM-MVC),该算法利用隶属度描述对象与类别的关系,能够更真实地描述具有聚簇重叠结构数据集的聚类结果。FCM-MVC算法同时利用多个视角信息,自动计算每个视角的权重。研究结果表明:FCM-MVC算法能够有效处理具有聚簇重叠结构的数据集;与已有的3种经典的多视角聚类算法相比,该算法获得的聚类精度更高。 展开更多
关键词 多视角聚类 模糊c-means 数据挖掘
在线阅读 下载PDF
基于模糊核c-means算法的位置指纹聚类 被引量:1
9
作者 李方 佟为明 +1 位作者 李凤阁 王铁成 《控制与决策》 EI CSCD 北大核心 2012年第8期1180-1184,1190,共6页
提出一种针对位置指纹的模糊核c-means聚类算法.将位置指纹归结为一种服从正态分布的区间值数据以反映接入点信号强度采样值的不确定性,通过区间中值和大小确定的正态分布函数将位置指纹映射为特征空间中的一点,并在该特征空间中采用基... 提出一种针对位置指纹的模糊核c-means聚类算法.将位置指纹归结为一种服从正态分布的区间值数据以反映接入点信号强度采样值的不确定性,通过区间中值和大小确定的正态分布函数将位置指纹映射为特征空间中的一点,并在该特征空间中采用基于核方法的模糊c-means算法对其进行聚类.通过ZigBee定位实验表明,该方法对于位置指纹的分类效果明显好于基于信号强度平均值的c-means聚类,可在保证定位精度的前提下有效降低定位的计算量. 展开更多
关键词 位置指纹聚类 区间值数据 核方法 模糊c-means
原文传递
可能性C-Means聚类算法的仿真实验 被引量:7
10
作者 吕佳 《重庆师范大学学报(自然科学版)》 CAS 2005年第3期129-132,共4页
关键词 c-meanS 聚类算法 仿真技术 可能性 模糊算法
在线阅读 下载PDF
HSI空间和改进C-means的彩色人民币号码分割方法 被引量:2
11
作者 闵晶妍 陈红兵 《光电工程》 CAS CSCD 北大核心 2012年第1期119-124,共6页
针对采集到的人民币号码图像都是彩色图像并携带有噪声这一现象,本文提出基于HSI空间和改进的C-means算法的人民币彩色号码图像分割方法。选用HSI颜色空间作为彩色分割空间,在HSI空间内,将HSI的3-D搜索问题转化为3个1-D的搜索问题,求取... 针对采集到的人民币号码图像都是彩色图像并携带有噪声这一现象,本文提出基于HSI空间和改进的C-means算法的人民币彩色号码图像分割方法。选用HSI颜色空间作为彩色分割空间,在HSI空间内,将HSI的3-D搜索问题转化为3个1-D的搜索问题,求取图像在3个1-D方向上的灰度直方图,该方法根据图像当前点3×3邻域内每个像素灰度值与当前点灰度值差值的大小情况,确定聚类算法中当前点的灰度值p(m)的值,采用C-means聚类算法分别确定文字和非文字的聚类中心,利用欧式距离进行人民币号码前景和背景的聚类判断。该方法直接对彩色人民币号码图像进行分割,考虑了当前点与邻域像素点之间的相互关系,具有一定的自适应性。实验结果表明,提出的号码图像分割方法不受图像噪声和局部边缘变化的影响,且变换后数据量减少,易于计算,该方法对字母和数字的分割都有效,鲁棒性较强。 展开更多
关键词 人民币号码图像 HSI c-means聚类 彩色图像分割
在线阅读 下载PDF
基于模糊c-means算法的空间数据分类和预测 被引量:3
12
作者 胡彩平 秦小麟 《计算机研究与发展》 EI CSCD 北大核心 2008年第7期1183-1188,共6页
空间分类和预测是空间数据挖掘中一个非常重要的方法,但对它们的研究目前尚处于初始阶段.通过引入空间对象对模糊聚类的模糊隶属度的概念,提出了基于模糊c-means算法的空间数据分类和预测的方法(SFCM).该方法首先用模糊c-means方法对数... 空间分类和预测是空间数据挖掘中一个非常重要的方法,但对它们的研究目前尚处于初始阶段.通过引入空间对象对模糊聚类的模糊隶属度的概念,提出了基于模糊c-means算法的空间数据分类和预测的方法(SFCM).该方法首先用模糊c-means方法对数据集论域空间进行聚类,但由于空间数据具有空间自相关的特性,在用模糊c-means算法进行空间聚类时加入了空间信息.然后计算每个空间对象对所有聚类的模糊隶属度并从中找出模糊隶属度最大的聚类.最后用该聚类中心对象的因变量的值作为该空间对象的因变量的估计值.理论分析和实验结果表明,该算法是有效可行的. 展开更多
关键词 模糊c-means算法 模糊隶属度 空间自相关 空间数据挖掘 空间分类和预测
在线阅读 下载PDF
基于模糊C-means聚类的地球化学数据分析 被引量:1
13
作者 孟海东 管世明 徐贯东 《金属矿山》 CAS 北大核心 2012年第4期106-108,143,共4页
采用数据挖掘技术中模糊C-means聚类算法,以地球化学元素为数据对象、样品分析结果为属性值,对某已知金矿区和锡矿区岩石样品的元素组合特征进行了分析。聚类分析得出的元素组合关系与已知地质资料相一致,表明模糊C-means聚类算法能够... 采用数据挖掘技术中模糊C-means聚类算法,以地球化学元素为数据对象、样品分析结果为属性值,对某已知金矿区和锡矿区岩石样品的元素组合特征进行了分析。聚类分析得出的元素组合关系与已知地质资料相一致,表明模糊C-means聚类算法能够客观、有效地发现地球化学元素的组合特征。同时,对位于内蒙古地区某多金属成矿带的地球化学采样数据进行了分析,根据聚类结果推断该地区是寻找金、银多金属矿产资源的目标区域。 展开更多
关键词 数据挖掘 模糊c-means聚类 地球化学元素 元素组合特征
在线阅读 下载PDF
C-means-based ant colony algorithm for TSP
14
作者 吴隽 李文锋 陈定方 《Journal of Southeast University(English Edition)》 EI CAS 2007年第S1期156-160,共5页
To solve the traveling salesman problem with the characteristics of clustering,a novel hybrid algorithm,the ant colony algorithm combined with the C-means algorithm,is presented.In order to improve the speed of conver... To solve the traveling salesman problem with the characteristics of clustering,a novel hybrid algorithm,the ant colony algorithm combined with the C-means algorithm,is presented.In order to improve the speed of convergence,the traveling salesman problem(TSP)data is specially clustered by the C-means algorithm,then,the result is processed by the ant colony algorithm to solve the problem.The proposed algorithm treats the C-means algorithm as a new search operator and adopts a kind of local searching strategy—2-opt,so as to improve the searching performance.Given the cluster number,the algorithm can obtain the preferable solving result.Compared with the three other algorithms—the ant colony algorithm,the genetic algorithm and the simulated annealing algorithm,the proposed algorithm can make the results converge to the global optimum faster and it has higher accuracy.The algorithm can also be extended to solve other correlative clustering combination optimization problems.Experimental results indicate the validity of the proposed algorithm. 展开更多
关键词 traveling salesman problem ant colony optimization c-meanS characteristics of clustering
在线阅读 下载PDF
一种基于蚁群算法和C-Means算法的图像分割方法 被引量:2
15
作者 叶志伟 《软件导刊》 2007年第7期106-108,共3页
针对传统C-Means算法在图像分割应用中的缺陷,本文提出一种蚁群算法(Ant Colony Optimization ACO)融合C-Means算法的图像聚类分割方法,它融合了C-Means算法和蚁群算法的优点,比传统的C-Means算法能得到更好的分割质量。实际图像分割试... 针对传统C-Means算法在图像分割应用中的缺陷,本文提出一种蚁群算法(Ant Colony Optimization ACO)融合C-Means算法的图像聚类分割方法,它融合了C-Means算法和蚁群算法的优点,比传统的C-Means算法能得到更好的分割质量。实际图像分割试验结果表明该方法是一种良好的图像分割新方法。 展开更多
关键词 蚁群算法 c-meanS 图像分割
在线阅读 下载PDF
基于Hadoop二阶段并行模糊c-Means聚类算法
16
作者 胡吉朝 黄红艳 《计算机应用与软件》 CSCD 2016年第6期282-286,共5页
针对Mapreduce机制下算法通信时间占用比过高,实际应用价值受限的情况,提出基于Hadoop二阶段并行c-Means聚类算法用来解决超大数据的分类问题。首先,改进Mapreduce机制下的MPI通信管理方法,采用成员管理协议方式实现成员管理与Mapreduc... 针对Mapreduce机制下算法通信时间占用比过高,实际应用价值受限的情况,提出基于Hadoop二阶段并行c-Means聚类算法用来解决超大数据的分类问题。首先,改进Mapreduce机制下的MPI通信管理方法,采用成员管理协议方式实现成员管理与Mapreduce降低操作的同步化;其次,实行典型个体组降低操作代替全局个体降低操作,并定义二阶段缓冲算法;最后,通过第一阶段的缓冲进一步降低第二阶段Mapreduce操作的数据量,尽可能降低大数据带来的对算法负面影响。在此基础上,利用人造大数据测试集和KDD CUP 99入侵测试集进行仿真,实验结果表明,该算法既能保证聚类精度要求又可有效加快算法运行效率。 展开更多
关键词 二阶段 模糊c-means 大数据 聚类 并行 入侵检测
在线阅读 下载PDF
基于蚁群算法和C-means算法的图像分割方法
17
作者 吴小菁 陈星娥 《长春师范学院学报(自然科学版)》 2013年第5期28-29,22,共3页
在计算机飞速发展的背景下,计算机的图像处理技术渗入到各个行业中。图像分割作为一种基本的图像处理技术,它的目的是把图像分成各具特征的区域,从中提取感兴趣的技术。针对以前的C-means算法在图像分割应用中的缺陷,本文提出了新的基... 在计算机飞速发展的背景下,计算机的图像处理技术渗入到各个行业中。图像分割作为一种基本的图像处理技术,它的目的是把图像分成各具特征的区域,从中提取感兴趣的技术。针对以前的C-means算法在图像分割应用中的缺陷,本文提出了新的基于蚁群算法和C-means算法相结合的新型图像分割方法,它和蚁群算法以及C-means算法相比,具有明显的优点,能够获得更好的分割质量。 展开更多
关键词 蚁群算法 c-means算法 图像分割方法 分析
在线阅读 下载PDF
Relative-Density-Viewpoint-Based Weighted Kernel Fuzzy Clustering
18
作者 Yuhan Xia Xu Li +2 位作者 Ye Liu Wenbo Zhou Yiming Tang 《Computers, Materials & Continua》 2025年第7期625-651,共27页
Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology.The combination of domain knowledge and fuzzy clustering algorithms has some problems,such as ini... Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology.The combination of domain knowledge and fuzzy clustering algorithms has some problems,such as initialization sensitivity and information granule weight optimization.Therefore,we propose a weighted kernel fuzzy clustering algorithm based on a relative density view(RDVWKFC).Compared with the traditional density-based methods,RDVWKFC can capture the intrinsic structure of the data more accurately,thus improving the initial quality of the clustering.By introducing a Relative Density based Knowledge Extraction Method(RDKM)and adaptive weight optimization mechanism,we effectively solve the limitations of view initialization and information granule weight optimization.RDKM can accurately identify high-density regions and optimize the initialization process.The adaptive weight mechanism can reduce noise and outliers’interference in the initial cluster centre selection by dynamically allocating weights.Experimental results on 14 benchmark datasets show that the proposed algorithm is superior to the existing algorithms in terms of clustering accuracy,stability,and convergence speed.It shows adaptability and robustness,especially when dealing with different data distributions and noise interference.Moreover,RDVWKFC can also show significant advantages when dealing with data with complex structures and high-dimensional features.These advancements provide versatile tools for real-world applications such as bioinformatics,image segmentation,and anomaly detection. 展开更多
关键词 Fuzzy clustering fuzzy c-means feature weighting information granule
在线阅读 下载PDF
An integrated strategy of AEF attribute evaluation for reliable thunderstorm detection
19
作者 Xu Yang Hongyan Xing +2 位作者 Xinyuan Ji Xin Su Witold Pedrycz 《Digital Communications and Networks》 2025年第1期234-245,共12页
Thunderstorm detection based on the Atmospheric Electric Field(AEF)has evolved from time-domain models to space-domain models.It is especially important to evaluate and determine the particularly Weather Attribute(WA)... Thunderstorm detection based on the Atmospheric Electric Field(AEF)has evolved from time-domain models to space-domain models.It is especially important to evaluate and determine the particularly Weather Attribute(WA),which is directly related to the detection reliability and authenticity.In this paper,a strategy is proposed to integrate three currently competitive WA's evaluation methods.First,a conventional evaluation method based on AEF statistical indicators is selected.Subsequent evaluation approaches include competing AEF-based predicted value intervals,and AEF classification based on fuzzy c-means.Different AEF attributes contribute to a more accurate AEF classification to different degrees.The resulting dynamic weighting applied to these attributes improves the classification accuracy.Each evaluation method is applied to evaluate the WA of a particular AEF,to obtain the corresponding evaluation score.The integration in the proposed strategy takes the form of a score accumulation.Different cumulative score levels correspond to different final WA results.Thunderstorm imaging is performed to visualize thunderstorm activities using those AEFs already evaluated to exhibit thunderstorm attributes.Empirical results confirm that the proposed strategy effectively and reliably images thunderstorms,with a 100%accuracy of WA evaluation.This is the first study to design an integrated thunderstorm detection strategy from a new perspective of WA evaluation,which provides promising solutions for a more reliable and flexible thunderstorm detection. 展开更多
关键词 Atmospheric electric field(AEF) THUNDERSTORM ATTRIBUTE Fuzzy c-means IMAGING
在线阅读 下载PDF
Fuzzy clustering for electric field characterization and its application to thunderstorm interpretability
20
作者 Xu Yang Hongyan Xing +2 位作者 Xinyuan Ji Wei Xu Witold Pedrycz 《Digital Communications and Networks》 2025年第2期299-307,共9页
Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm activities.However,little attention has been paid to the ambiguous weather information impl... Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm activities.However,little attention has been paid to the ambiguous weather information implicit in AEFS changes.In this paper,a Fuzzy C-Means(FCM)clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by AEFS.First,a time series dataset is created in the time domain using AEFS attributes.The AEFS-based weather is evaluated according to the time-series Membership Degree(MD)changes obtained by inputting this dataset into the FCM.Second,thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF apparatus.Thus,a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space domain.Finally,the rationality and reliability of the proposed method are verified by combining radar charts and expert experience.The results confirm that this method accurately characterizes the weather attributes and changes in the AEFS,and a negative distance-MD correlation is obtained for the first time.The detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms. 展开更多
关键词 Atmospheric electric field(AEF) THUNDERSTORM Fuzzy c-means(FCM) ATTRIBUTE
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部