In opportunistic networks, most existing buffer management policies including scheduling and passive dropping policies are mainly for routing protocols. In this paper, we proposed a Utility-based Buffer Management str...In opportunistic networks, most existing buffer management policies including scheduling and passive dropping policies are mainly for routing protocols. In this paper, we proposed a Utility-based Buffer Management strategy(UBM) for data dissemination in opportunistic networks. In UBM, we first design a method of computing the utility values of caching messages according to the interest of nodes and the delivery probability of messages, and then propose an overall buffer management policy based on the utility. UBM driven by receivers completely implements not only caching policies, passive and proactive dropping policies, but also scheduling policies of senders. Simulation results show that, compared with some classical dropping strategies, UBM can obtain higher delivery ratio and lower delay latency by using smaller network cost.展开更多
Compared with wheeled or tracked robots,legged robots exhibit advantages on agile locomotion and higher survival chance for deadly impacts. A buffering strategy is proposed for quadruped robots with non-extreme initia...Compared with wheeled or tracked robots,legged robots exhibit advantages on agile locomotion and higher survival chance for deadly impacts. A buffering strategy is proposed for quadruped robots with non-extreme initial attitudes from the end of air-righting to the steady standing on the ground.This approach consists of landing phase,buffering phase and recovering phase. The variable stiffness control,proportional-derivative( PD) force control and foot trajectory planning are applied to the joints of quadruped robots until the end of the recovering phase. The PD parameters are tuned according to the desired performance of each phase. The above approach is verified on a virtual platform.展开更多
基金supported by the National Natural Science Fund of China under Grant No. 61472097the Education Ministry Doctoral Research Foundation of China (20132304110017)the International Exchange Program of Harbin Engineering University for Innovation-oriented Talents Cultivation
文摘In opportunistic networks, most existing buffer management policies including scheduling and passive dropping policies are mainly for routing protocols. In this paper, we proposed a Utility-based Buffer Management strategy(UBM) for data dissemination in opportunistic networks. In UBM, we first design a method of computing the utility values of caching messages according to the interest of nodes and the delivery probability of messages, and then propose an overall buffer management policy based on the utility. UBM driven by receivers completely implements not only caching policies, passive and proactive dropping policies, but also scheduling policies of senders. Simulation results show that, compared with some classical dropping strategies, UBM can obtain higher delivery ratio and lower delay latency by using smaller network cost.
基金Supported by the National High Technology Research and Development Program of China(No.2015AA042201)the National Natural Science Foundation of China(No.61233014,61305130)+1 种基金the Shandong Provincial Natural Science Foundation(No.ZR2013FQ003,ZR2013EEM027)China Postdoctoral Science Foundation(No.2013M541912)
文摘Compared with wheeled or tracked robots,legged robots exhibit advantages on agile locomotion and higher survival chance for deadly impacts. A buffering strategy is proposed for quadruped robots with non-extreme initial attitudes from the end of air-righting to the steady standing on the ground.This approach consists of landing phase,buffering phase and recovering phase. The variable stiffness control,proportional-derivative( PD) force control and foot trajectory planning are applied to the joints of quadruped robots until the end of the recovering phase. The PD parameters are tuned according to the desired performance of each phase. The above approach is verified on a virtual platform.