In this paper,we consider the discrete boundary value problem of the type{∆u1=0=∆un-1,∇(t_(k)^(N-1))φ(∆uk))+t_(k)^(N-1)fk(t_(k),u_(k),∆_(uk))=0,2≤k≤n-1,whereφ:(-a,a)→R,0<a<∞,is an increasing homeomorphism ...In this paper,we consider the discrete boundary value problem of the type{∆u1=0=∆un-1,∇(t_(k)^(N-1))φ(∆uk))+t_(k)^(N-1)fk(t_(k),u_(k),∆_(uk))=0,2≤k≤n-1,whereφ:(-a,a)→R,0<a<∞,is an increasing homeomorphism withφ(0)=0,such aφis called singular,N≥1,n≥3 are integers,tk are the grid points,uk:=u(tk),k=1,2,...,n,∇is the backward difference operator defined by∆uk=uk-uk-1,△is the forward difference operator defined by△uk=uk+1-uk,fk(2≤k≤n-1)are continuous functions.We prove the existence of solutions to this problem by employing the sign condition,the continuation lemma and the upper and lower solutions,respectively.On this basis,we also establish the Ambrosetti-Prodi type results for it.展开更多
Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static...Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems;however,the simultaneous enforcement of I/BCs in dynamic problems remains challenging.To overcome this limitation,a novel approach called decoupled physics-informed neural network(d PINN)is proposed in this work.The d PINN operates based on the core idea of converting a partial differential equation(PDE)to a system of ordinary differential equations(ODEs)via the space-time decoupled formulation.To this end,the latent solution is expressed in the form of a linear combination of approximation functions and coefficients,where approximation functions are admissible and coefficients are unknowns of time that must be solved.Subsequently,the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain.A multi-network structure is used to parameterize the set of coefficient functions,and the loss function of d PINN is established based on minimizing the residuals of the gained ODEs.In this scheme,the decoupled formulation leads to the independent handling of I/BCs.Accordingly,the BCs are automatically satisfied based on suitable selections of admissible functions.Meanwhile,the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients,and the neural network(NN)outputs are modified to satisfy the gained ICs.Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of d PINN compared with regular PINN in terms of solution accuracy and computational cost.展开更多
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quan...Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the chara...This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the characteristic function and resolvent of this third-order differential operator.Secondly,by using the expression for the resolvent of the operator,we prove that the spectrum for this operator consists of simple eigenvalues and a finite number of eigenvalues with multiplicity 2.Finally,we solve the inverse problem for this operator,which states that the non-local potential function can be reconstructed from four spectra.Specially,we prove the Ambarzumyan theorem and indicate that odd or even potential functions can be reconstructed by three spectra.展开更多
In this paper,we study a class of Sturm-Liouville problems,where the boundary conditions involve eigenparameters.Firstly,by defining a new inner product which depends on the transmission conditions,we obtain a new Hil...In this paper,we study a class of Sturm-Liouville problems,where the boundary conditions involve eigenparameters.Firstly,by defining a new inner product which depends on the transmission conditions,we obtain a new Hilbert space,on which the concerned operator A is self-adjoint.Then we construct the fundamental solutions to the problem,obtain the necessary and sufficient conditions for eigenvalues,and prove that the eigenvalues are simple.Finally,we investigate Green’s functions of such problem.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of suff...This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.展开更多
The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of...The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of differential inequalities.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solution...The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.展开更多
By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed w...By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.展开更多
Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was...Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.展开更多
The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which e...The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.展开更多
A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value prob...A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value problems are studied.展开更多
The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0...The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.展开更多
The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core...The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core-layers poses a lot of tricky problems. Of them,the force analysis of individual skin-layers and the springback calculation of sandwich are of utmost importance. Under reasonable assumptions,by using Fourier expansion of stress function and power series expansion of deflection function,two boun...展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
This paper discusses three kinds of BVPs of elliptic system (E1) on the complementary domain of disk. The results, based on Fourier analysis method. not only enrich the results of reference [1]. but also are of both t...This paper discusses three kinds of BVPs of elliptic system (E1) on the complementary domain of disk. The results, based on Fourier analysis method. not only enrich the results of reference [1]. but also are of both theoretical and practical interest.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.1236104012461035)+1 种基金the Outstanding Youth Fund of Gansu Province(Grant No.24JRRA121)the Scientific Research Ability Improvement Program for Young Teachers of Northwest Normal University(Grant No.NWNU-LKQN2021-17)。
文摘In this paper,we consider the discrete boundary value problem of the type{∆u1=0=∆un-1,∇(t_(k)^(N-1))φ(∆uk))+t_(k)^(N-1)fk(t_(k),u_(k),∆_(uk))=0,2≤k≤n-1,whereφ:(-a,a)→R,0<a<∞,is an increasing homeomorphism withφ(0)=0,such aφis called singular,N≥1,n≥3 are integers,tk are the grid points,uk:=u(tk),k=1,2,...,n,∇is the backward difference operator defined by∆uk=uk-uk-1,△is the forward difference operator defined by△uk=uk+1-uk,fk(2≤k≤n-1)are continuous functions.We prove the existence of solutions to this problem by employing the sign condition,the continuation lemma and the upper and lower solutions,respectively.On this basis,we also establish the Ambrosetti-Prodi type results for it.
基金Project supported by the Basic Science Research Program through the National Research Foundation(NRF)of Korea funded by the Ministry of Science and ICT(No.RS-2024-00337001)。
文摘Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems;however,the simultaneous enforcement of I/BCs in dynamic problems remains challenging.To overcome this limitation,a novel approach called decoupled physics-informed neural network(d PINN)is proposed in this work.The d PINN operates based on the core idea of converting a partial differential equation(PDE)to a system of ordinary differential equations(ODEs)via the space-time decoupled formulation.To this end,the latent solution is expressed in the form of a linear combination of approximation functions and coefficients,where approximation functions are admissible and coefficients are unknowns of time that must be solved.Subsequently,the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain.A multi-network structure is used to parameterize the set of coefficient functions,and the loss function of d PINN is established based on minimizing the residuals of the gained ODEs.In this scheme,the decoupled formulation leads to the independent handling of I/BCs.Accordingly,the BCs are automatically satisfied based on suitable selections of admissible functions.Meanwhile,the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients,and the neural network(NN)outputs are modified to satisfy the gained ICs.Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of d PINN compared with regular PINN in terms of solution accuracy and computational cost.
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
基金supported by the NSF of Hebei Province(A2022208007)the NSF of China(11571089,11871191)the NSF of Henan Province(222300420397)。
文摘Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
基金supported by the Tianjin Municipal Science and Technology Program of China(No.23JCZDJC00070)。
文摘This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the characteristic function and resolvent of this third-order differential operator.Secondly,by using the expression for the resolvent of the operator,we prove that the spectrum for this operator consists of simple eigenvalues and a finite number of eigenvalues with multiplicity 2.Finally,we solve the inverse problem for this operator,which states that the non-local potential function can be reconstructed from four spectra.Specially,we prove the Ambarzumyan theorem and indicate that odd or even potential functions can be reconstructed by three spectra.
基金supported by the National Natural Science Foundation of China(No.12461086)the Natural Science Foundation of Hubei Province(No.2022CFC016)。
文摘In this paper,we study a class of Sturm-Liouville problems,where the boundary conditions involve eigenparameters.Firstly,by defining a new inner product which depends on the transmission conditions,we obtain a new Hilbert space,on which the concerned operator A is self-adjoint.Then we construct the fundamental solutions to the problem,obtain the necessary and sufficient conditions for eigenvalues,and prove that the eigenvalues are simple.Finally,we investigate Green’s functions of such problem.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.
文摘The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of differential inequalities.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.
文摘By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.
文摘Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.
文摘The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.
文摘A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value problems are studied.
文摘The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.
基金National Natural Science Foundation of China (10477001, 60673056)
文摘The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core-layers poses a lot of tricky problems. Of them,the force analysis of individual skin-layers and the springback calculation of sandwich are of utmost importance. Under reasonable assumptions,by using Fourier expansion of stress function and power series expansion of deflection function,two boun...
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
文摘This paper discusses three kinds of BVPs of elliptic system (E1) on the complementary domain of disk. The results, based on Fourier analysis method. not only enrich the results of reference [1]. but also are of both theoretical and practical interest.