In this paper,we consider the discrete boundary value problem of the type{∆u1=0=∆un-1,∇(t_(k)^(N-1))φ(∆uk))+t_(k)^(N-1)fk(t_(k),u_(k),∆_(uk))=0,2≤k≤n-1,whereφ:(-a,a)→R,0<a<∞,is an increasing homeomorphism ...In this paper,we consider the discrete boundary value problem of the type{∆u1=0=∆un-1,∇(t_(k)^(N-1))φ(∆uk))+t_(k)^(N-1)fk(t_(k),u_(k),∆_(uk))=0,2≤k≤n-1,whereφ:(-a,a)→R,0<a<∞,is an increasing homeomorphism withφ(0)=0,such aφis called singular,N≥1,n≥3 are integers,tk are the grid points,uk:=u(tk),k=1,2,...,n,∇is the backward difference operator defined by∆uk=uk-uk-1,△is the forward difference operator defined by△uk=uk+1-uk,fk(2≤k≤n-1)are continuous functions.We prove the existence of solutions to this problem by employing the sign condition,the continuation lemma and the upper and lower solutions,respectively.On this basis,we also establish the Ambrosetti-Prodi type results for it.展开更多
Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static...Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems;however,the simultaneous enforcement of I/BCs in dynamic problems remains challenging.To overcome this limitation,a novel approach called decoupled physics-informed neural network(d PINN)is proposed in this work.The d PINN operates based on the core idea of converting a partial differential equation(PDE)to a system of ordinary differential equations(ODEs)via the space-time decoupled formulation.To this end,the latent solution is expressed in the form of a linear combination of approximation functions and coefficients,where approximation functions are admissible and coefficients are unknowns of time that must be solved.Subsequently,the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain.A multi-network structure is used to parameterize the set of coefficient functions,and the loss function of d PINN is established based on minimizing the residuals of the gained ODEs.In this scheme,the decoupled formulation leads to the independent handling of I/BCs.Accordingly,the BCs are automatically satisfied based on suitable selections of admissible functions.Meanwhile,the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients,and the neural network(NN)outputs are modified to satisfy the gained ICs.Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of d PINN compared with regular PINN in terms of solution accuracy and computational cost.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed w...By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.展开更多
The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solution...The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.展开更多
A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value prob...A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value problems are studied.展开更多
The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which e...The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.展开更多
The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0...The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core...The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core-layers poses a lot of tricky problems. Of them,the force analysis of individual skin-layers and the springback calculation of sandwich are of utmost importance. Under reasonable assumptions,by using Fourier expansion of stress function and power series expansion of deflection function,two boun...展开更多
The nonlocal boundary value problems for nonlinear elliptic systems in the unbounded domain are considered. Under suitable conditions the existence of solution and comparison theorem for the boundary value problems ar...The nonlocal boundary value problems for nonlinear elliptic systems in the unbounded domain are considered. Under suitable conditions the existence of solution and comparison theorem for the boundary value problems are studied.展开更多
This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value ...In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.展开更多
The singularly perturbed nonlinear boundary value problems are considered.Using the stretched variable and the method of boundary layer correction,the formal asymptotic expansion of solution is obtained.And then the u...The singularly perturbed nonlinear boundary value problems are considered.Using the stretched variable and the method of boundary layer correction,the formal asymptotic expansion of solution is obtained.And then the uniform validity of solution is proved by using the differential inequalities.展开更多
Based on the theory of stratification, the well-posedness of the init ial and boundary value problems for the system of two-dimensional non-hydrosta ti c Boussinesq equations was discussed. The sufficient and necessa...Based on the theory of stratification, the well-posedness of the init ial and boundary value problems for the system of two-dimensional non-hydrosta ti c Boussinesq equations was discussed. The sufficient and necessary conditions of the existence and uniqueness for the solution of the equations were given for s ome representative initial and boundary value problems. Several special cases we re discussed.展开更多
The authors study the existence of positive solutions to the boundary value problem where f and e: [r,R] x [0,∞) → R are two continuous functions satisfying f 0 and |e| M for some M > 0. The authors show that...The authors study the existence of positive solutions to the boundary value problem where f and e: [r,R] x [0,∞) → R are two continuous functions satisfying f 0 and |e| M for some M > 0. The authors show that there exists at least one positive solution in the following two cases: (i) f is superlinear at infinity and λ > 0 is small enough; (ii) f is sublinear at infinity and λ > 0 is large enough. Their proofs are based on fixed point theorems in cones.展开更多
In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 ...Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.展开更多
By establishing the corresponding variational framework, and using the critical points theorem, we give the existence of multiple solutions for a fractional difference boundary value problem with p-Laplacian operator....By establishing the corresponding variational framework, and using the critical points theorem, we give the existence of multiple solutions for a fractional difference boundary value problem with p-Laplacian operator. Under some suitable assumptions we obtain the existence of a positive parameter such that the problem admits at least three solutions. Some examples are presented to illustrate the main results.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.1236104012461035)+1 种基金the Outstanding Youth Fund of Gansu Province(Grant No.24JRRA121)the Scientific Research Ability Improvement Program for Young Teachers of Northwest Normal University(Grant No.NWNU-LKQN2021-17)。
文摘In this paper,we consider the discrete boundary value problem of the type{∆u1=0=∆un-1,∇(t_(k)^(N-1))φ(∆uk))+t_(k)^(N-1)fk(t_(k),u_(k),∆_(uk))=0,2≤k≤n-1,whereφ:(-a,a)→R,0<a<∞,is an increasing homeomorphism withφ(0)=0,such aφis called singular,N≥1,n≥3 are integers,tk are the grid points,uk:=u(tk),k=1,2,...,n,∇is the backward difference operator defined by∆uk=uk-uk-1,△is the forward difference operator defined by△uk=uk+1-uk,fk(2≤k≤n-1)are continuous functions.We prove the existence of solutions to this problem by employing the sign condition,the continuation lemma and the upper and lower solutions,respectively.On this basis,we also establish the Ambrosetti-Prodi type results for it.
基金Project supported by the Basic Science Research Program through the National Research Foundation(NRF)of Korea funded by the Ministry of Science and ICT(No.RS-2024-00337001)。
文摘Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems;however,the simultaneous enforcement of I/BCs in dynamic problems remains challenging.To overcome this limitation,a novel approach called decoupled physics-informed neural network(d PINN)is proposed in this work.The d PINN operates based on the core idea of converting a partial differential equation(PDE)to a system of ordinary differential equations(ODEs)via the space-time decoupled formulation.To this end,the latent solution is expressed in the form of a linear combination of approximation functions and coefficients,where approximation functions are admissible and coefficients are unknowns of time that must be solved.Subsequently,the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain.A multi-network structure is used to parameterize the set of coefficient functions,and the loss function of d PINN is established based on minimizing the residuals of the gained ODEs.In this scheme,the decoupled formulation leads to the independent handling of I/BCs.Accordingly,the BCs are automatically satisfied based on suitable selections of admissible functions.Meanwhile,the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients,and the neural network(NN)outputs are modified to satisfy the gained ICs.Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of d PINN compared with regular PINN in terms of solution accuracy and computational cost.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.
文摘The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.
文摘A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value problems are studied.
文摘The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.
文摘The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
基金National Natural Science Foundation of China (10477001, 60673056)
文摘The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core-layers poses a lot of tricky problems. Of them,the force analysis of individual skin-layers and the springback calculation of sandwich are of utmost importance. Under reasonable assumptions,by using Fourier expansion of stress function and power series expansion of deflection function,two boun...
基金The project supported by the National Natural Science Foundation of China
文摘The nonlocal boundary value problems for nonlinear elliptic systems in the unbounded domain are considered. Under suitable conditions the existence of solution and comparison theorem for the boundary value problems are studied.
文摘This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
基金Supported by NSFC(11326127,11101335)NWNULKQN-11-23the Fundamental Research Funds for the Gansu Universities
文摘In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.
文摘The singularly perturbed nonlinear boundary value problems are considered.Using the stretched variable and the method of boundary layer correction,the formal asymptotic expansion of solution is obtained.And then the uniform validity of solution is proved by using the differential inequalities.
基金Project supported by the National Natural Science Foundation of China (Grant No.40175014)
文摘Based on the theory of stratification, the well-posedness of the init ial and boundary value problems for the system of two-dimensional non-hydrosta ti c Boussinesq equations was discussed. The sufficient and necessary conditions of the existence and uniqueness for the solution of the equations were given for s ome representative initial and boundary value problems. Several special cases we re discussed.
基金Supported by Natural Science Foundation of ChinaFoundation of Key Teacher of University of Education Ministry
文摘The authors study the existence of positive solutions to the boundary value problem where f and e: [r,R] x [0,∞) → R are two continuous functions satisfying f 0 and |e| M for some M > 0. The authors show that there exists at least one positive solution in the following two cases: (i) f is superlinear at infinity and λ > 0 is small enough; (ii) f is sublinear at infinity and λ > 0 is large enough. Their proofs are based on fixed point theorems in cones.
文摘In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
基金Supported by the Natural Science Foundation of Hunan Province(06JJ50008) Supported by the Natural Science Foundation of Guangdong Province(7004569)
文摘Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.
基金Supported by the National Natural Science Foundation of China(Grant No.11161049)
文摘By establishing the corresponding variational framework, and using the critical points theorem, we give the existence of multiple solutions for a fractional difference boundary value problem with p-Laplacian operator. Under some suitable assumptions we obtain the existence of a positive parameter such that the problem admits at least three solutions. Some examples are presented to illustrate the main results.