期刊文献+
共找到3,223篇文章
< 1 2 162 >
每页显示 20 50 100
Boosting框架算法模型预测雷击火的适用性
1
作者 周暖阳 睢星 +6 位作者 赵凤君 杜建华 李笑笑 闫凯达 张师渊 李威 王京鲁 《陆地生态系统与保护学报》 2025年第2期47-62,共16页
【目的】旨在为我国雷击火发生最严重的大兴安岭林区筛选性能优良的雷击火发生预测模型,为该地区的雷击火精准防控提供科学支撑。【方法】采用大兴安岭林区2015—2023年的历史雷击火案例、气象因子、闪电、可燃物、火险天气指数等多源数... 【目的】旨在为我国雷击火发生最严重的大兴安岭林区筛选性能优良的雷击火发生预测模型,为该地区的雷击火精准防控提供科学支撑。【方法】采用大兴安岭林区2015—2023年的历史雷击火案例、气象因子、闪电、可燃物、火险天气指数等多源数据,运用机器学习方法构建雷击火发生概率模型;并通过对比基于Boosting框架算法(包括AdaBoost、GBM、XGBoost、LightGBM和CatBoost)的模型与其他常用模型(随机森林、决策树和深度神经网络)在雷击火预测性能上的差异,筛选最优的算法模型。【结果】首先,基于Boosting框架集成算法(除AdaBoost)的预测模型在准确率、查准率、召回率、F1值和ROC AUC等关键指标上优于其他常用模型。其次,在所有Boosting框架集成算法中,梯度提升机(Gradient Boosting Machines,GBM)表现最为优异,其准确率达到91%,F1值为0.7004,ROC AUC值为0.9329,表明其在预测雷击火发生概率方面具有较强的综合性能。在实际预测结果验证中,GBM的预测效果也是最优的。模型的特征重要性评估结果表明,空气相对湿度和森林火险天气指数在多个模型中都具有高的重要性,另外纬度也具有较高的重要性。【结论】Boosting框架的集成算法能够有效处理不平衡数据,提高对少数类样本(雷击火)的预测能力,相比于构建模型的其他算法,Boosting框架算法在构建雷击火发生预测模型中具有明显优势,特别是GBM。 展开更多
关键词 雷击火 boosting框架算法 GBM 预测模型 大兴安岭
在线阅读 下载PDF
多类在线Boosting的小样本细粒度图像目标识别算法 被引量:1
2
作者 闵小翠 《信息技术与信息化》 2025年第1期133-136,共4页
在图像识别领域,传统方法处理小样本细粒度图像时局限于单模态,忽略了图像内部联系,导致识别效果差。为此,文章提出了一种针对小样本细粒度图像的多类在线Boosting目标识别算法。该算法先对图像进行预处理和分割,用双随机矩阵打乱碎片... 在图像识别领域,传统方法处理小样本细粒度图像时局限于单模态,忽略了图像内部联系,导致识别效果差。为此,文章提出了一种针对小样本细粒度图像的多类在线Boosting目标识别算法。该算法先对图像进行预处理和分割,用双随机矩阵打乱碎片后重建图像。在重建图上提取细粒度特征,通过深度学习模型将这些特征映射至高维空间形成有效特征表示。这些特征随后被输入多类在线Boosting算法,结合多个弱学习器并更新模型,挖掘特征关联性,构建跨模态语义关联,实现精确识别。实验结果显示,对200组细粒度图像识别时,本算法在不同测试数据集上识别效果稳定,TP识别数均在192以上,最高达194。与对照组相比,本算法在识别可靠性和有效性方面优势显著。 展开更多
关键词 多类在线boosting 小样本细粒度图像 目标识别 拼图排列解算 双随机矩阵
在线阅读 下载PDF
基于Boosting算法的转炉终点预测模型
3
作者 李星彤 龚伟 李帝阅 《材料与冶金学报》 北大核心 2025年第6期589-596,共8页
针对国内某钢厂的转炉终点控制模型受高炉铁水成分和温度波动较大等因素的影响,致使终点碳温预测命中率偏低的问题,本文中利用现场生产数据建立了基于机器学习的转炉终点智能控制模型,并使用不同的Boosting算法模型对转炉终点进行预测.... 针对国内某钢厂的转炉终点控制模型受高炉铁水成分和温度波动较大等因素的影响,致使终点碳温预测命中率偏低的问题,本文中利用现场生产数据建立了基于机器学习的转炉终点智能控制模型,并使用不同的Boosting算法模型对转炉终点进行预测.结果表明:4种Boosting算法模型的预测准确率均高于机理模型的预测准确率,其中CatBoost模型的准确率最高,其预测值与真实值差距最小;在200炉次中,CatBoost模型终点钢水碳含量预测偏差在±0.02%以内的有166炉,命中率为83.0%,终点温度预测偏差在±15℃以内的有165炉,命中率为82.5%;与机理模型相比,终点钢水碳含量命中率提高了17个百分点,终点温度命中率提高了23.5个百分点,使用CatBoost模型预测能够为现场转炉冶炼过程终点判断提供有效指导. 展开更多
关键词 转炉炼钢 终点碳含量预测 终点温度预测 机器学习 boosting算法
在线阅读 下载PDF
不均衡数据下基于CS-Boosting的故障诊断算法 被引量:6
4
作者 姚培 王仲生 +1 位作者 姜洪开 刘贞报 《振动.测试与诊断》 EI CSCD 北大核心 2013年第1期111-115,169,共5页
针对传统Boosting算法在训练样本不均衡数据情况下不能较好地实现转子系统故障诊断的问题,提出了一种基于代价敏感度框架的Boosting故障诊断算法CS-Boosting。该算法建立了一个代价敏感损失函数,通过先验概率公式计算正样本与负样本的... 针对传统Boosting算法在训练样本不均衡数据情况下不能较好地实现转子系统故障诊断的问题,提出了一种基于代价敏感度框架的Boosting故障诊断算法CS-Boosting。该算法建立了一个代价敏感损失函数,通过先验概率公式计算正样本与负样本的惩罚因子,并通过决策规则的训练使代价损失函数最小化。将该算法应用到滚动轴承故障诊断中,并与传统的Adaboost算法进行对比。试验结果表明,在转子系统不能获取更多故障数据的情况下,该算法的故障诊断性能较其他算法有明显的提高。 展开更多
关键词 代价敏感度 滚动轴承 boosting算法 CS—boosting 代价损失函数
在线阅读 下载PDF
代价敏感Boosting算法研究 被引量:3
5
作者 李秋洁 茅耀斌 +1 位作者 叶曙光 王执铨 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第1期19-24,31,共7页
针对代价敏感学习问题,研究boosting算法的代价敏感扩展。提出一种基于代价敏感采样的代价敏感boosting学习方法,通过在原始boosting每轮迭代中引入代价敏感采样,最小化代价敏感损失期望。基于上述学习框架,推导出两种代价敏感boosting... 针对代价敏感学习问题,研究boosting算法的代价敏感扩展。提出一种基于代价敏感采样的代价敏感boosting学习方法,通过在原始boosting每轮迭代中引入代价敏感采样,最小化代价敏感损失期望。基于上述学习框架,推导出两种代价敏感boosting算法,同时,揭示并解释已有算法的不稳定本质。在加州大学欧文分校(University of California,Irvine,UCI)数据集和麻省理工学院生物和计算学习中心(Center for Biological&Computational Learning,CBCL)人脸数据集上的实验结果表明,对于代价敏感分类问题,代价敏感采样boosting算法优于原始boosting和已有代价敏感boosting算法。 展开更多
关键词 boosting 代价敏感boosting 代价敏感学习 代价敏感采样
在线阅读 下载PDF
Noninvasive prediction of esophagogastric varices in hepatitis B:An extreme gradient boosting model based on ultrasound and serology
6
作者 Si-Yi Feng Zong-Ren Ding +1 位作者 Jin Cheng Hai-Bin Tu 《World Journal of Gastroenterology》 2025年第13期62-78,共17页
BACKGROUND Severe esophagogastric varices(EGVs)significantly affect prognosis of patients with hepatitis B because of the risk of life-threatening hemorrhage.Endoscopy is the gold standard for EGV detection but it is ... BACKGROUND Severe esophagogastric varices(EGVs)significantly affect prognosis of patients with hepatitis B because of the risk of life-threatening hemorrhage.Endoscopy is the gold standard for EGV detection but it is invasive,costly and carries risks.Noninvasive predictive models using ultrasound and serological markers are essential for identifying high-risk patients and optimizing endoscopy utilization.Machine learning(ML)offers a powerful approach to analyze complex clinical data and improve predictive accuracy.This study hypothesized that ML models,utilizing noninvasive ultrasound and serological markers,can accurately predict the risk of EGVs in hepatitis B patients,thereby improving clinical decisionmaking.AIM To construct and validate a noninvasive predictive model using ML for EGVs in hepatitis B patients.METHODS We retrospectively collected ultrasound and serological data from 310 eligible cases,randomly dividing them into training(80%)and validation(20%)groups.Eleven ML algorithms were used to build predictive models.The performance of the models was evaluated using the area under the curve and decision curve analysis.The best-performing model was further analyzed using SHapley Additive exPlanation to interpret feature importance.RESULTS Among the 310 patients,124 were identified as high-risk for EGVs.The extreme gradient boosting model demonstrated the best performance,achieving an area under the curve of 0.96 in the validation set.The model also exhibited high sensitivity(78%),specificity(94%),positive predictive value(84%),negative predictive value(88%),F1 score(83%),and overall accuracy(86%).The top four predictive variables were albumin,prothrombin time,portal vein flow velocity and spleen stiffness.A web-based version of the model was developed for clinical use,providing real-time predictions for high-risk patients.CONCLUSION We identified an efficient noninvasive predictive model using extreme gradient boosting for EGVs among hepatitis B patients.The model,presented as a web application,has potential for screening high-risk EGV patients and can aid clinicians in optimizing the use of endoscopy. 展开更多
关键词 Esophagogastric varices Machine learning Extreme gradient boosting ULTRASOUND Serological markers
暂未订购
GWO-LightGBM:A Hybrid Grey Wolf Optimized Light Gradient Boosting Model for Cyber-Physical System Security
7
作者 Adeel Munawar Muhammad Nadeem Ali +1 位作者 Awais Qasim Byung-Seo Kim 《Computer Modeling in Engineering & Sciences》 2025年第10期1189-1211,共23页
Cyber-physical systems(CPS)represent a sophisticated integration of computational and physical components that power critical applications such as smart manufacturing,healthcare,and autonomous infrastructure.However,t... Cyber-physical systems(CPS)represent a sophisticated integration of computational and physical components that power critical applications such as smart manufacturing,healthcare,and autonomous infrastructure.However,their extensive reliance on internet connectivity makes them increasingly susceptible to cyber threats,potentially leading to operational failures and data breaches.Furthermore,CPS faces significant threats related to unauthorized access,improper management,and tampering of the content it generates.In this paper,we propose an intrusion detection system(IDS)optimized for CPS environments using a hybrid approach by combining a natureinspired feature selection scheme,such as Grey Wolf Optimization(GWO),in connection with the emerging Light Gradient Boosting Machine(LightGBM)classifier,named as GWO-LightGBM.While gradient boosting methods have been explored in prior IDS research,our novelty lies in proposing a hybrid approach targeting CPS-specific operational constraints,such as low-latency response and accurate detection of rare and critical attack types.We evaluate GWO-LightGBM against GWO-XGBoost,GWO-CatBoost,and an artificial neural network(ANN)baseline using the NSL-KDD and CIC-IDS-2017 benchmark datasets.The proposed models are assessed across multiple metrics,including accuracy,precision,recall,and F1-score,with an emphasis on class-wise performance and training efficiency.The proposed GWO-LightGBM model achieves the highest overall accuracy(99.73%)for NSL-KDD and(99.61%)for CIC-IDS-2017,demonstrating superior performance in detecting minority classes such as Remote-to-Local(R2L)and Other attacks—commonly overlooked by other classifiers.Moreover,the proposed model consumes lower training time,highlighting its practical feasibility and scalability for real-time CPS deployment. 展开更多
关键词 Cyber-physical systems intrusion detection system machine learning digital contents copyright protection grey wolf optimization gradient boosting network security content protection LightGBM
在线阅读 下载PDF
基于Boosting集成学习的电网系统异常数据识别算法
8
作者 孙红燕 王少华 《电子设计工程》 2025年第22期187-190,196,共5页
为提高异常天气下电网系统异常数据识别的准确性,提出了一种基于Boosting集成学习的算法。通过构建多层结构模糊规则表示电网设备运行数据,以递推方式计算时序数据均值并划分子时序数据,挖掘数据集中隐含的结构信息,建立基于特征的数据... 为提高异常天气下电网系统异常数据识别的准确性,提出了一种基于Boosting集成学习的算法。通过构建多层结构模糊规则表示电网设备运行数据,以递推方式计算时序数据均值并划分子时序数据,挖掘数据集中隐含的结构信息,建立基于特征的数据间连接关系;同时基于Boosting集成学习,使用不同弱分类器训练电网设备运行数据集,构建异常数据识别模型,优化损失函数计算电力系统运行数据的特异性程度,并采用加法模型不断减小残差,得到电网监控系统数据分类结果,实现异常数据的识别。由实验结果可知,该方法能准确识别异常值,最终识别准确率达97.47%;在不同天气状态下,异常数据识别准确率虽有所下降,但均高于96%;在不同异常程度下,识别准确率一直保持在90%以上。 展开更多
关键词 boosting集成学习 电网系统 异常数据 分类器 数据识别算法
在线阅读 下载PDF
Extreme gradient boosting with Shapley Additive Explanations for landslide susceptibility at slope unit and hydrological response unit scales
9
作者 Ananta Man Singh Pradhan Pramit Ghimire +3 位作者 Suchita Shrestha Ji-Sung Lee Jung-Hyun Lee Hyuck-Jin Park 《Geoscience Frontiers》 2025年第4期357-372,共16页
This study provides an in-depth comparative evaluation of landslide susceptibility using two distinct spatial units:and slope units(SUs)and hydrological response units(HRUs),within Goesan County,South Korea.Leveraging... This study provides an in-depth comparative evaluation of landslide susceptibility using two distinct spatial units:and slope units(SUs)and hydrological response units(HRUs),within Goesan County,South Korea.Leveraging the capabilities of the extreme gradient boosting(XGB)algorithm combined with Shapley Additive Explanations(SHAP),this work assesses the precision and clarity with which each unit predicts areas vulnerable to landslides.SUs focus on the geomorphological features like ridges and valleys,focusing on slope stability and landslide triggers.Conversely,HRUs are established based on a variety of hydrological factors,including land cover,soil type and slope gradients,to encapsulate the dynamic water processes of the region.The methodological framework includes the systematic gathering,preparation and analysis of data,ranging from historical landslide occurrences to topographical and environmental variables like elevation,slope angle and land curvature etc.The XGB algorithm used to construct the Landslide Susceptibility Model(LSM)was combined with SHAP for model interpretation and the results were evaluated using Random Cross-validation(RCV)to ensure accuracy and reliability.To ensure optimal model performance,the XGB algorithm’s hyperparameters were tuned using Differential Evolution,considering multicollinearity-free variables.The results show that SU and HRU are effective for LSM,but their effectiveness varies depending on landscape characteristics.The XGB algorithm demonstrates strong predictive power and SHAP enhances model transparency of the influential variables involved.This work underscores the importance of selecting appropriate assessment units tailored to specific landscape characteristics for accurate LSM.The integration of advanced machine learning techniques with interpretative tools offers a robust framework for landslide susceptibility assessment,improving both predictive capabilities and model interpretability.Future research should integrate broader data sets and explore hybrid analytical models to strengthen the generalizability of these findings across varied geographical settings. 展开更多
关键词 Landslide susceptibility mapping Hydrological response units Slope units Extreme gradient boosting Hyper parameter tuning Shapley additive explanations
在线阅读 下载PDF
Predictive model and risk analysis for outcomes in diabetic foot ulcer using eXtreme Gradient Boosting algorithm and SHapley Additive exPlanation
10
作者 Lei Gao Zi-Xuan Liu Jiang-Ning Wang 《World Journal of Diabetes》 2025年第7期167-183,共17页
BACKGROUND Diabetic foot ulcer(DFU)is a serious and destructive complication of diabetes,which has a high amputation rate and carries a huge social burden.Early detection of risk factors and intervention are essential... BACKGROUND Diabetic foot ulcer(DFU)is a serious and destructive complication of diabetes,which has a high amputation rate and carries a huge social burden.Early detection of risk factors and intervention are essential to reduce amputation rates.With the development of artificial intelligence technology,efficient interpretable predictive models can be generated in clinical practice to improve DFU care.AIM To develop and validate an interpretable model for predicting amputation risk in DFU patients.METHODS This retrospective study collected basic data from 599 patients with DFU in Beijing Shijitan Hospital between January 2015 and June 2024.The data set was randomly divided into a training set and test set with fivefold cross-validation.Three binary variable models were built with the eXtreme Gradient Boosting(XGBoost)algorithm to input risk factors that predict amputation probability.The model performance was optimized by adjusting the super parameters.The pre-dictive performance of the three models was expressed by sensitivity,specificity,positive predictive value,negative predictive value and area under the curve(AUC).Visualization of the prediction results was realized through SHapley Additive exPlanation(SHAP).RESULTS A total of 157(26.2%)patients underwent minor amputation during hospitalization and 50(8.3%)had major amputation.All three XGBoost models demonstrated good discriminative ability,with AUC values>0.7.The model for predicting major amputation achieved the highest performance[AUC=0.977,95%confidence interval(CI):0.956-0.998],followed by the minor amputation model(AUC=0.800,95%CI:0.762-0.838)and the non-amputation model(AUC=0.772,95%CI:0.730-0.814).Feature importance ranking of the three models revealed the risk factors for minor and major amputation.Wagner grade 4/5,osteomyelitis,and high C-reactive protein were all considered important predictive variables.CONCLUSION XGBoost effectively predicts diabetic foot amputation risk and provides interpretable insights to support person-alized treatment decisions. 展开更多
关键词 Diabetic foot ulcer Amputation risk stratification Clinical risk prediction eXtreme Gradient boosting SHapley Additive exPlanation Machine learning
暂未订购
Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality
11
作者 Fengying Ye Ming Hu +4 位作者 Jun Luo Wei Yu Zhirong Xu Jinjin Fu Yansong Zheng 《Chinese Chemical Letters》 2025年第5期325-329,共5页
To get large dissymmetric factor(g_(lum))of organic circularly polarized luminescence(CPL)materials is still a great challenge.Although helical chirality and planar chirality are usual efficient access to enhancement ... To get large dissymmetric factor(g_(lum))of organic circularly polarized luminescence(CPL)materials is still a great challenge.Although helical chirality and planar chirality are usual efficient access to enhancement of CPL,they are not combined together to boost CPL.Here,a new tetraphenylethylene(TPE)tetracycle acid helicate bearing both helical chirality and planar chirality was designed and synthesized.Uniquely,synergy of the helical chirality and planar chirality was used to boost CPL signals both in solution and in helical self-assemblies.In the presence of octadecylamine,the TPE helicate could form helical nanofibers that emitted strong CPL signals with an absolute g_(lum)value up to 0.237.Exceptionally,followed by addition of para-phenylenediamine,the g_(lum)value was successively increased to 0.387 due to formation of bigger helical nanofibers.Compared with that of TPE helicate itself,the CPL signal of the self-assemblies was not only magnified by 104-fold but also inversed,which was very rare result for CPL-active materials.Surprisingly,the interaction of TPE helicate with xylylenediamine even gave a gel,which was transformed into suspension by shaking.Unexpectedly,the suspension showed 40-fold stronger CPL signals than the gel with signal direction inversion each other.Using synergy of the helical chirality and planar chirality to significantly boost CPL intensity provides a new strategy in preparation of organic CPL materials having very large g_(lum)value. 展开更多
关键词 Synergy of helical and planar chirality Tetraphenylethylene helicate boosting circularly-polarized luminescence Helical nanofibers Self-assembly
原文传递
From AI Kung Fu to Economic Resilience:Boosting Global Confidence with Innovation and Policies
12
作者 Zhang Hui 《China Today》 2025年第4期2-2,共1页
In a video that has mesmerized audiences worldwide,a humanoid robot displays a magical move of self-defense,executing a flawless 720-degree spinning kick to knock out a baton held in a human hand.This is Chinese compa... In a video that has mesmerized audiences worldwide,a humanoid robot displays a magical move of self-defense,executing a flawless 720-degree spinning kick to knock out a baton held in a human hand.This is Chinese company Unitree Robotics’G1 robot,embodying the innovation that has propelled China forward as the world’s second largest economy. 展开更多
关键词 ROBOT boosting CONFIDENCE
在线阅读 下载PDF
A Study on the Inter-Pretability of Network Attack Prediction Models Based on Light Gradient Boosting Machine(LGBM)and SHapley Additive exPlanations(SHAP)
13
作者 Shuqin Zhang Zihao Wang Xinyu Su 《Computers, Materials & Continua》 2025年第6期5781-5809,共29页
The methods of network attacks have become increasingly sophisticated,rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats effectively.In recent years,artificial int... The methods of network attacks have become increasingly sophisticated,rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats effectively.In recent years,artificial intelligence has achieved significant progress in the field of network security.However,many challenges and issues remain,particularly regarding the interpretability of deep learning and ensemble learning algorithms.To address the challenge of enhancing the interpretability of network attack prediction models,this paper proposes a method that combines Light Gradient Boosting Machine(LGBM)and SHapley Additive exPlanations(SHAP).LGBM is employed to model anomalous fluctuations in various network indicators,enabling the rapid and accurate identification and prediction of potential network attack types,thereby facilitating the implementation of timely defense measures,the model achieved an accuracy of 0.977,precision of 0.985,recall of 0.975,and an F1 score of 0.979,demonstrating better performance compared to other models in the domain of network attack prediction.SHAP is utilized to analyze the black-box decision-making process of the model,providing interpretability by quantifying the contribution of each feature to the prediction results and elucidating the relationships between features.The experimental results demonstrate that the network attack predictionmodel based on LGBM exhibits superior accuracy and outstanding predictive capabilities.Moreover,the SHAP-based interpretability analysis significantly improves the model’s transparency and interpretability. 展开更多
关键词 Artificial intelligence network attack prediction light gradient boosting machine(LGBM) SHapley Additive exPlanations(SHAP) INTERPRETABILITY
在线阅读 下载PDF
Prediction of the first 2^(+) states properties for atomic nuclei using light gradient boosting machine
14
作者 Hui Liu Xin-Xiang Li +2 位作者 Yun Yuan Wen Luo Yi Xu 《Nuclear Science and Techniques》 2025年第2期95-102,共8页
The first 2^(+)excited states of the nucleus directly reflect the interaction between the shell structure and the nucleus,providing insights into the validity of the shell model and nuclear structure characteristics.A... The first 2^(+)excited states of the nucleus directly reflect the interaction between the shell structure and the nucleus,providing insights into the validity of the shell model and nuclear structure characteristics.Although the features of the first 2^(+)excited states can be measured for stable nuclei and calculated using nuclear models,significant uncertainty remains.This study employs a machine learning model based on a light gradient boosting machine(LightGBM)to investigate the first 2^(+)excited states.Specifically,the training of the LightGBM algorithm and the prediction of the first 2^(+)properties of 642 nuclei are presented.Furthermore,detailed comparisons of the LightGBM predictions were performed with available experimental data,shell model calculations,and Bayesian neural network predictions.The results revealed that the average difference between the LightGBM predictions and the experimental data was 18 times smaller than that obtained by the shell model and only 70%of the BNN prediction results.Considering Mg,Ca,Kr,Sm,and Pb isotopes as examples,it was also observed that LightGBM can effectively reproduce the magic number mutation caused by shell effects,with the energy being as low as 0.04 MeV due to shape coexistence.Therefore,we believe that leveraging LightGBM-based machine learning can profoundly enhance our insights into nuclear structures and provide new avenues for nuclear physics research. 展开更多
关键词 First 2^(+) state Nuclear levels Light gradient boosting machine
在线阅读 下载PDF
A Hybrid Ensemble Learning Approach Utilizing Light Gradient Boosting Machine and Category Boosting Model for Lifestyle-Based Prediction of Type-II Diabetes Mellitus 被引量:1
15
作者 Mahadi Nagassou Ronald Waweru Mwangi Euna Nyarige 《Journal of Data Analysis and Information Processing》 2023年第4期480-511,共32页
Addressing classification and prediction challenges, tree ensemble models have gained significant importance. Boosting ensemble techniques are commonly employed for forecasting Type-II diabetes mellitus. Light Gradien... Addressing classification and prediction challenges, tree ensemble models have gained significant importance. Boosting ensemble techniques are commonly employed for forecasting Type-II diabetes mellitus. Light Gradient Boosting Machine (LightGBM) is a widely used algorithm known for its leaf growth strategy, loss reduction, and enhanced training precision. However, LightGBM is prone to overfitting. In contrast, CatBoost utilizes balanced base predictors known as decision tables, which mitigate overfitting risks and significantly improve testing time efficiency. CatBoost’s algorithm structure counteracts gradient boosting biases and incorporates an overfitting detector to stop training early. This study focuses on developing a hybrid model that combines LightGBM and CatBoost to minimize overfitting and improve accuracy by reducing variance. For the purpose of finding the best hyperparameters to use with the underlying learners, the Bayesian hyperparameter optimization method is used. By fine-tuning the regularization parameter values, the hybrid model effectively reduces variance (overfitting). Comparative evaluation against LightGBM, CatBoost, XGBoost, Decision Tree, Random Forest, AdaBoost, and GBM algorithms demonstrates that the hybrid model has the best F1-score (99.37%), recall (99.25%), and accuracy (99.37%). Consequently, the proposed framework holds promise for early diabetes prediction in the healthcare industry and exhibits potential applicability to other datasets sharing similarities with diabetes. 展开更多
关键词 boosting Ensemble Learning Category boosting Light Gradient boosting Machine
在线阅读 下载PDF
Boosting和Bagging综述 被引量:69
16
作者 沈学华 周志华 +1 位作者 吴建鑫 陈兆乾 《计算机工程与应用》 CSCD 北大核心 2000年第12期31-32,40,共3页
Boosting 和 Bagging 是两种用来提高学习算法准确度的方法,这两种方法通过构造一个预测函数系列,然后以一定的方式将它们组合成一个预测函数.文章将介绍这两种方法以及对他们进行的一些理论分析和实验,并对它们的应用以及将来可能的研... Boosting 和 Bagging 是两种用来提高学习算法准确度的方法,这两种方法通过构造一个预测函数系列,然后以一定的方式将它们组合成一个预测函数.文章将介绍这两种方法以及对他们进行的一些理论分析和实验,并对它们的应用以及将来可能的研究进行讨论. 展开更多
关键词 机器学习 泛化误差 boosting算法 BAGGING算法
在线阅读 下载PDF
Boosting家族AdaBoost系列代表算法 被引量:27
17
作者 涂承胜 刁力力 +1 位作者 鲁明羽 陆玉昌 《计算机科学》 CSCD 北大核心 2003年第3期30-34,145,共6页
Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of it... Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of its seri-als-AdaBoost,analyzes the typical algorithms of AdaBoost. 展开更多
关键词 boosting Adaboost.R算法 AdaBoost.oc算法 学习算法 ADABOOST算法
在线阅读 下载PDF
用Boosting方法组合增强Stumps进行文本分类(英文) 被引量:15
18
作者 刁力力 胡可云 +1 位作者 陆玉昌 石纯一 《软件学报》 EI CSCD 北大核心 2002年第8期1361-1367,共7页
为提高文本分类的精度,Schapire和Singer尝试了一个用Boosting来组合仅有一个划分的简单决策树(Stumps)的方法.其基学习器的划分是由某个特定词项是否在待分类文档中出现决定的.这样的基学习器明显太弱,造成最后组合成的Boosting分类器... 为提高文本分类的精度,Schapire和Singer尝试了一个用Boosting来组合仅有一个划分的简单决策树(Stumps)的方法.其基学习器的划分是由某个特定词项是否在待分类文档中出现决定的.这样的基学习器明显太弱,造成最后组合成的Boosting分类器精度不够理想,而且需要的迭代次数很大,因而效率很低.针对这个问题,提出由文档中所有词项来决定基学习器划分以增强基学习器分类能力的方法.它把以VSM表示的文档与类代表向量之间的相似度和某特定阈值的大小关系作为基学习器划分的标准.同时,为提高算法的收敛速度,在类代表向量的计算过程中动态引入Boosting分配给各学习样本的权重.实验结果表明,这种方法提高了用Boosting组合Stump分类器进行文本分类的性能(精度和效率),而且问题规模越大,效果越明显. 展开更多
关键词 boosting方法 文本分类 机器学习 Stumps分类器
在线阅读 下载PDF
Bagging偏最小二乘和Boosting偏最小二乘算法的金银花醇沉过程近红外光谱定量模型预测能力研究 被引量:15
19
作者 陈昭 吴志生 +3 位作者 史新元 徐冰 赵娜 乔延江 《分析化学》 SCIE EI CAS CSCD 北大核心 2014年第11期1679-1686,共8页
建立金银花醇沉过程中稳健的近红外光谱(Nearinfraredspectroscopy,NIR)定量模型,为金银花醇沉过程的快速评价提供方法。研究基于金银花醇沉过程绿原酸的NIR数据,通过建立Bagging偏最小二乘(Bagging-PLS)模型、Boosting偏最小二乘(... 建立金银花醇沉过程中稳健的近红外光谱(Nearinfraredspectroscopy,NIR)定量模型,为金银花醇沉过程的快速评价提供方法。研究基于金银花醇沉过程绿原酸的NIR数据,通过建立Bagging偏最小二乘(Bagging-PLS)模型、Boosting偏最小二乘(Boosting-PLS)模型与偏最小二乘(PartialLeastSquares,PLS)模型,实现对模型性能比较;在此基础上,采用组合间隔偏最小二乘法(Synergyintervalpartialleastsquares,siPLS)和竞争自适应抽样(Competitiveadaptivereweightedsampling,CARS)法分别对光谱进行变量筛选,建立模型,实现了对模型预测性能的考察。实验结果表明,Bagging-PLS和Boosting-PLS(潜变量因子数设为10)的预测性能均优于PLS模型。在此基础上,两批样品采用siPLS筛选变量,第一个批次金银花筛选波段820-1029.5nm和1030-1239.5nm,第二个批次金银花醇沉筛选波段为820-959.5nm和960-1099.5nm;采用CARS方法变量筛选,两批样品分别选择5折交叉验证和10折交叉验证,取交叉验证均方根误差(RMSECV)值最小的子集作为最终变量筛选的结果。经过变量筛选的两批金银花醇沉过程中的绿原酸含量Bagging-PLS和Boosting-PLS模型的预测均方根误差(RMSEP)值降低了0.02-0.04g/L,预测相关系数提高了4%-5%。综上,Baggning-PLS和Boosting-PLS算法可作为金银花醇沉过程NIR定量模型的快速预测方法。 展开更多
关键词 过程分析技术 金银花 醇沉 Bagging偏最小二乘算法 boosting偏最小二乘算法
在线阅读 下载PDF
一种基于Boosting判别模型的运动阴影检测方法 被引量:9
20
作者 查宇飞 楚瀛 +2 位作者 王勋 马时平 毕笃彦 《计算机学报》 EI CSCD 北大核心 2007年第8期1295-1301,共7页
在视频处理中,由于运动阴影具有与运动前景相同的特性,当在提取前景时,会误把阴影检测为前景.特别是当阴影和其它前景发生粘连时,这可能会严重地影响跟踪、识别等后续处理.该文提出了一种用于运动阴影检测的Boosting判别模型.这种方法... 在视频处理中,由于运动阴影具有与运动前景相同的特性,当在提取前景时,会误把阴影检测为前景.特别是当阴影和其它前景发生粘连时,这可能会严重地影响跟踪、识别等后续处理.该文提出了一种用于运动阴影检测的Boosting判别模型.这种方法先利用Boosting在不同的特征空间来区分前景和阴影,然后在判别随机场(DRFs)中结合前景和阴影的时空一致性,实现对前景和阴影的分割.首先,差分前图像与背景图像得到颜色不变子空间和纹理不变子空间;然后在这两个子空间上应用Boosting来区分前景和阴影;最后利用前景和阴影的时空一致性,在判别随机场中通过图分割的方法准确地分割前景和阴影.实验结果表明,无论是在室内场景,还是在室外场景,该文的方法要好于传统的方法. 展开更多
关键词 阴影检测 boosting 判别随机场 图分割
在线阅读 下载PDF
上一页 1 2 162 下一页 到第
使用帮助 返回顶部