The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation locatio...The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation location parameter Gon the fretting contact surface of the cylinder block are obtained and analyzed. It shows that the fretting fatigue problem of the cylinder block can be quantitat ively explained by WorG. The effects of pretightening force, friction factor and material combination of the cylinder block and the main bearing cap are studied. The computational results indicate that the fretting fatigue of the cylinder block can be allayed by increasing the elastic modulus of the cylinder block, but not by changing the other two factors.展开更多
A numerical research on magnetohydrodynamic mixed convection flow in a lid-driven trapezoidal enclosure at non-uniform heating of bottom wall has been studied numerically. The enclosure consists of insulated top wall ...A numerical research on magnetohydrodynamic mixed convection flow in a lid-driven trapezoidal enclosure at non-uniform heating of bottom wall has been studied numerically. The enclosure consists of insulated top wall and cold side walls, too. It also contains a heated triangular block (<em>Rot</em> = 0<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span> - 90<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>) located somewhere inside the enclosure. The boundary top wall of the enclosure is moving through uniform speed <em>U</em><sub>0</sub>. The geometry of the model has been represented mathematically by coupled governing equations in accordance with proper boundary conditions and then a two-dimensional Galerkin finite element based numerical approach has been adopted to solve this paper. The numerical computations have been carried out for the wide range of parameters Prandtl number (0.5 ≤ <em>Pr</em> ≤ 2), Reynolds number (60 ≤ <em>Re</em> ≤ 120), Rayleigh number (<em>Ra</em> = 10<sup>3</sup>) and Hartmann number (<em>Ha</em> = 20) taking with different rotations of heated triangular block. The results have been shown in the form of streamlines, temperature patterns or isotherms, average Nusselt number and average bulk temperature of the fluid in the enclosure at non-uniform heating of bottom wall. It is also indicated that both the streamlines, isotherm patterns strongly depend on the aforesaid governing parameters and location of the triangular block but the thermal conductivity of the triangular block has a noteworthy role on the isotherm pattern lines. Moreover, the variation of <em>Nu</em><sub>av</sub> of hot bottom wall and <em>θ</em><sub>av</sub> in the enclosure is demonstrated here to show the characteristics of heat transfer in the enclosure.展开更多
The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are propose...The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.展开更多
废电解铝阳极碳块经过高温碳化,通过盐酸-硝酸-高氯酸三酸溶解完全后,冷却,完全溶解盐类加入10 mL 1.19 g/mL的盐酸,在优选出最优的仪器工作状态下,创建了ICP-AES法测定废电解铝阳极碳块样品中Fe、Li、K、Ca、Mg的化学分析方法。每个元...废电解铝阳极碳块经过高温碳化,通过盐酸-硝酸-高氯酸三酸溶解完全后,冷却,完全溶解盐类加入10 mL 1.19 g/mL的盐酸,在优选出最优的仪器工作状态下,创建了ICP-AES法测定废电解铝阳极碳块样品中Fe、Li、K、Ca、Mg的化学分析方法。每个元素的校准曲线相关系数均大于0.999,同时对以上多种元素进行检出限、加标回收试验研究,结果表明其相对标准偏差(n=8)为0.60%~2.24%,加标回收率在97.1%~104%。展开更多
文摘The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation location parameter Gon the fretting contact surface of the cylinder block are obtained and analyzed. It shows that the fretting fatigue problem of the cylinder block can be quantitat ively explained by WorG. The effects of pretightening force, friction factor and material combination of the cylinder block and the main bearing cap are studied. The computational results indicate that the fretting fatigue of the cylinder block can be allayed by increasing the elastic modulus of the cylinder block, but not by changing the other two factors.
文摘A numerical research on magnetohydrodynamic mixed convection flow in a lid-driven trapezoidal enclosure at non-uniform heating of bottom wall has been studied numerically. The enclosure consists of insulated top wall and cold side walls, too. It also contains a heated triangular block (<em>Rot</em> = 0<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span> - 90<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>) located somewhere inside the enclosure. The boundary top wall of the enclosure is moving through uniform speed <em>U</em><sub>0</sub>. The geometry of the model has been represented mathematically by coupled governing equations in accordance with proper boundary conditions and then a two-dimensional Galerkin finite element based numerical approach has been adopted to solve this paper. The numerical computations have been carried out for the wide range of parameters Prandtl number (0.5 ≤ <em>Pr</em> ≤ 2), Reynolds number (60 ≤ <em>Re</em> ≤ 120), Rayleigh number (<em>Ra</em> = 10<sup>3</sup>) and Hartmann number (<em>Ha</em> = 20) taking with different rotations of heated triangular block. The results have been shown in the form of streamlines, temperature patterns or isotherms, average Nusselt number and average bulk temperature of the fluid in the enclosure at non-uniform heating of bottom wall. It is also indicated that both the streamlines, isotherm patterns strongly depend on the aforesaid governing parameters and location of the triangular block but the thermal conductivity of the triangular block has a noteworthy role on the isotherm pattern lines. Moreover, the variation of <em>Nu</em><sub>av</sub> of hot bottom wall and <em>θ</em><sub>av</sub> in the enclosure is demonstrated here to show the characteristics of heat transfer in the enclosure.
文摘The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.
文摘废电解铝阳极碳块经过高温碳化,通过盐酸-硝酸-高氯酸三酸溶解完全后,冷却,完全溶解盐类加入10 mL 1.19 g/mL的盐酸,在优选出最优的仪器工作状态下,创建了ICP-AES法测定废电解铝阳极碳块样品中Fe、Li、K、Ca、Mg的化学分析方法。每个元素的校准曲线相关系数均大于0.999,同时对以上多种元素进行检出限、加标回收试验研究,结果表明其相对标准偏差(n=8)为0.60%~2.24%,加标回收率在97.1%~104%。