为了挖掘满足用户特殊需求,如含指定项目数量的高效用项集(HUI),提出一种基于长度约束的蝙蝠高效用项集挖掘算法(HUIM-LC-BA)。该算法融合蝙蝠算法(BA)和长度约束构建高效用项集挖掘(HUIM)模型,首先将数据库转换为位图矩阵,实现高效的...为了挖掘满足用户特殊需求,如含指定项目数量的高效用项集(HUI),提出一种基于长度约束的蝙蝠高效用项集挖掘算法(HUIM-LC-BA)。该算法融合蝙蝠算法(BA)和长度约束构建高效用项集挖掘(HUIM)模型,首先将数据库转换为位图矩阵,实现高效的效用计算和数据库扫描;其次,采用重新定义的事务加权效用(RTWU)策略缩减搜索空间;最后,对项集进行长度修剪,使用深度优先搜索和轮盘赌注选择法确定修剪项目。在4个数据集的仿真实验中,当最大长度为6时,与HUIM-BA相比,HUIM-LC-BA挖掘的模式数量分别减少了91%、98%、99%与97%,同时运行时间也少于HUIM-BA;且在不同长度约束条件下,与FHM+(Faster High-utility itemset Ming plus)算法相比运行时间更稳定。实验结果表明,HUIM-LC-BA能有效挖掘具有长度约束的HUI,并减少挖掘模式的数量。展开更多
大数据时代,Graph500是评测超级计算机处理数据密集型应用能力的重要工具,E级验证系统的图遍历处理能力主要受限于内存空间和访存带宽,尤其是内存空间利用率直接决定了图的测试规模和测试性能.针对天河E级验证系统小内存特征,提出了基...大数据时代,Graph500是评测超级计算机处理数据密集型应用能力的重要工具,E级验证系统的图遍历处理能力主要受限于内存空间和访存带宽,尤其是内存空间利用率直接决定了图的测试规模和测试性能.针对天河E级验证系统小内存特征,提出了基于双向位图的大规模图数据压缩存储方法(bidirectional-bitmap based CSR,Bi-CSR),Bi-CSR在CSR矩阵压缩的基础上引入行方向位图和列方向位图协同完成稀疏矩阵压缩存储,行方向位图主要负责行方向位图的压缩存储与索引,列方向位图除了进一步压缩图存储空间,还负责为顶点遍历向量并行优化提供加速空间.Bi-CSR大幅度减少了稀疏矩阵存储空间.面向天河E级验证系统,当图输入规模为237时,Graph500的图存储空间节约效率接近70%,全系统稳定测试性能为2.131E+12TEPS,性能最大加速比超过100倍.展开更多
文摘为了挖掘满足用户特殊需求,如含指定项目数量的高效用项集(HUI),提出一种基于长度约束的蝙蝠高效用项集挖掘算法(HUIM-LC-BA)。该算法融合蝙蝠算法(BA)和长度约束构建高效用项集挖掘(HUIM)模型,首先将数据库转换为位图矩阵,实现高效的效用计算和数据库扫描;其次,采用重新定义的事务加权效用(RTWU)策略缩减搜索空间;最后,对项集进行长度修剪,使用深度优先搜索和轮盘赌注选择法确定修剪项目。在4个数据集的仿真实验中,当最大长度为6时,与HUIM-BA相比,HUIM-LC-BA挖掘的模式数量分别减少了91%、98%、99%与97%,同时运行时间也少于HUIM-BA;且在不同长度约束条件下,与FHM+(Faster High-utility itemset Ming plus)算法相比运行时间更稳定。实验结果表明,HUIM-LC-BA能有效挖掘具有长度约束的HUI,并减少挖掘模式的数量。
文摘大数据时代,Graph500是评测超级计算机处理数据密集型应用能力的重要工具,E级验证系统的图遍历处理能力主要受限于内存空间和访存带宽,尤其是内存空间利用率直接决定了图的测试规模和测试性能.针对天河E级验证系统小内存特征,提出了基于双向位图的大规模图数据压缩存储方法(bidirectional-bitmap based CSR,Bi-CSR),Bi-CSR在CSR矩阵压缩的基础上引入行方向位图和列方向位图协同完成稀疏矩阵压缩存储,行方向位图主要负责行方向位图的压缩存储与索引,列方向位图除了进一步压缩图存储空间,还负责为顶点遍历向量并行优化提供加速空间.Bi-CSR大幅度减少了稀疏矩阵存储空间.面向天河E级验证系统,当图输入规模为237时,Graph500的图存储空间节约效率接近70%,全系统稳定测试性能为2.131E+12TEPS,性能最大加速比超过100倍.