Current research on wind energy piezoelectric energy harvesters(PEHs)mainly focuses on tandem smooth cylinder energy harvesters;however,the traditional tandem smooth cylinder energy harvester has low voltage output an...Current research on wind energy piezoelectric energy harvesters(PEHs)mainly focuses on tandem smooth cylinder energy harvesters;however,the traditional tandem smooth cylinder energy harvester has low voltage output and narrow energy harvest bandwidth.In this study,a D-type bionic fin is designed and installed on a smooth cylindrical surface to improve its performance.The influence of the spacing ratio on the amplitude and voltage of PEHs with D-type bionic fins added under elastic interference was investigated through wind tunnel tests.Three installation positions were designed:only installed upstream,only installed downstream,and not installed upstream and downstream(BARE).It was found that the maximum displacement of the upstream PEH(UPEH)was not apparently affected by the D-type bionic fin.Contrastingly,the fin changed the maximum amplitude from a small to a large spacing ratio for the downstream PEH(DPEH).D-type bionic fin can enhance energy harvest performance by coupling“coupled vortex-induced vibration”and wake induced galloping,increasing the surface velocity of PEHs and expanding the bandwidth of the voltage harvested by the PEHs.Analysis of the power under the experimental wind speed showed that installing D-type fins in the PEHs can increase the output power of the upstream and downstream PEHs by 392.28%and 13%,respectively,compared with that of the BARE-PEH.Additionally,computational fluid dynamics was used to analyze the flow pattern,wake structure,and lift coefficient of the PEHs,and to explain why the upstream D-type bionic fin installation has an impact on the harvest performance of the upstream and downstream PEHs at a spacing ratio of 1.5.This study provides an efficient and simple scheme for designing wind PEHs.展开更多
The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow...The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow moldboard. The model surfaces for bionic simulation should be taken from soil animal digging organs, on which the soil motion is similar to what is on the surface of moldboard. By analyzing the distribution of non-smooth units on the body surface of the ground beetle jaw and the soil moving stresses, the design principles of the bionic moldboard for the local and the whole moldboard were presented respectively. As well, the effect of soil moving speed on reducing adhesion, the dimensions relationship between soil particles and non-smooth convexes, the relationship between the enveloping surface of non-smooth convexes and the initial smooth surface of the plow body, and the convex types of the sphere coronal and the pangolin scales,etc.were discussed.展开更多
Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique. The convex domes on the bionic sample were fabricated by compression molding under a compressive stre...Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique. The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa. The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3μL water drop at room temperature. The measurement of the wetting property showed that the water contact angle of the unmodi- fied as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time. The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure. The structure is composed of the micro-scaled alumina columns and pores. The height of columns and the depth of pores depend on the ano- dizing time. The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT), showing a change in the wettability from hydrophobicity to su- per-hydrophobicity. This improvement in the wetting property chemical modification. is attributed to the decrease in the surface energy caused by the展开更多
A scanning electron microscope was used to observe the structures of the setae on the surface of a dung beetle Copris ochus, Motschulsky. There are lots of setae on the body surface, especially on the ventral part sur...A scanning electron microscope was used to observe the structures of the setae on the surface of a dung beetle Copris ochus, Motschulsky. There are lots of setae on the body surface, especially on the ventral part surface and lateral to the legs which are different in size, arrangement and shape. These setae have different lengths and many thorns on the whole seta. The top ends of these setae stand up without furcations which direct uprightly towards the surface of the touched soil. By the method of removing these setae, getting the insect weight before and after digging into the dung we affirm farther that the setae on the beetle body surface form the anti-stick and non-adherent gentle interface. The soil machines and components made by imitating the gentle body surface of beetles have favorable non-adherent results.展开更多
Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodie...Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag.展开更多
Inspired by the successful applications of biological non-smoothness,we introduced bionic non-smooth surfaces as appendices into vehicle body design,aiming to further reduce aerodynamic drag.The size range of the non-...Inspired by the successful applications of biological non-smoothness,we introduced bionic non-smooth surfaces as appendices into vehicle body design,aiming to further reduce aerodynamic drag.The size range of the non-smooth units with pits and grooves was determined according to our analysis with the mechanisms underlying non-smooth unit mediated aerodynamic drag reduction.The bionic non-smooth units reported here were designed to adapt the structure of a given vehicle body from the point of boundary layer control that reduces the burst and the loss of turbulent kinetic energy.The engine cover lid and vehicle body cap were individually treated with the non-smooth units,and the treated vehicles were subjected to aerodynamic drag coefficient simulation tests using the computational fluid dynamics(CFD) analysis method.The simulation results showed that,in comparison with smooth surfaces,properly designed non-smooth surfaces can have greater effects on drag reduction.The mechanism underlying drag reduction mediated by non-smooth surfaces was revealed by further analyses,in which the effects of non-smooth and smooth surfaces were directly compared.展开更多
The study of bionics has found that the skins of many burrow animals which live in soil and stone conditions have an anti wear function, and which is related to their body surfaces’non-smooth morphology. In the pres...The study of bionics has found that the skins of many burrow animals which live in soil and stone conditions have an anti wear function, and which is related to their body surfaces’non-smooth morphology. In the present study, bionic non-smooth surfaces are used in roll surface design, and roll models with convex non-smooth surfaces are developed. The rolling wear of non-smooth roll in steel rolling is simulated by the FEM software-ANSYS. The equivalent stress, the node friction stress, and the node contact pressure between the roll and the rolling piece are calculated; and the anti-wear mechanism is analyzed.展开更多
Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydrop...Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.展开更多
The surface of magnesium alloy was laser-processed,and the laser-etched morphology was determined as grooves by observing the surface morphology of sheep rib bone.The wettability of different morphologies was investig...The surface of magnesium alloy was laser-processed,and the laser-etched morphology was determined as grooves by observing the surface morphology of sheep rib bone.The wettability of different morphologies was investigated by contact angle test.Through the cell adhesion test,the effects of different morphologies on cell adhesion,growth and migration were investigated.Results show that the wetting angle of the block-shaped surface is smaller than that of the groove-shaped surface,and block-shaped surface has better hydrophilicity.Compared with the smooth surface,the block-shaped surface has better cell adhesion,and the depressions and bumps are full of cells,suggesting that the micropatterns prepared by the laser processing are conducive to the enhancement of biocompatibility.展开更多
Super depth digital microscope was employed to observe the macro-/micro-structure of Coleoptera's elytra.The non-smooth surface textures of elytra have shown superior performance of friction reduction and lubricat...Super depth digital microscope was employed to observe the macro-/micro-structure of Coleoptera's elytra.The non-smooth surface textures of elytra have shown superior performance of friction reduction and lubrication.Bionic models of regular hexagonal convex texture and circular concave texture inspired by the beetle were established and verified by numerical calculations and simulations.Further tribological experiments were performed and the results show that the circle texture has the lowest coefficient,which is consistent with the numerical calculations.The research may be further applied to new bionic surface texture designs and also work as a biological template for new bionic inventions.展开更多
In order to satisfy the needs of different applications and more complex intelligent devices,smart control of surface wettability will be necessary and desirable,which gradually become a hot spot and focus in the fiel...In order to satisfy the needs of different applications and more complex intelligent devices,smart control of surface wettability will be necessary and desirable,which gradually become a hot spot and focus in the field of interface wetting.Herein,we review interfacial wetting states related to switchable wettability on superwettable materials,including several classical wetting models and liquid adhesive behaviors based on the surface of natural creatures with special wettability.This review mainly focuses on the recent developments of the smart surfaces with switchable wettability and the corresponding regulatory mechanisms under external stimuli,which is mainly governed by the transformation of surface chemical composition and geometrical structures.Among that,various external stimuli such as physical stimulation(temperature,light,electric,magnetic,mechanical stress),chemical stimulation(pH,ion,solvent)and dual or multi-triggered stimulation have been sought out to realize the regulation of surface wettability.Moreover,we also summarize the applications of smart surfaces in different fields,such as oil/water separation,programmable transportation,anti-biofouling,detection and delivery,smart soft robotic etc.Furthermore,current limitations and future perspective in the development of smart wetting surfaces are also given.This review aims to offer deep insights into the recent developments and responsive mechanisms in smart biomimetic surfaces with switchable wettability under external various stimuli,so as to provide a guidance for the design of smart surfaces and expand the scope of both fundamental research and practical applications.展开更多
In order to repair and reuse remaining quenching surface(RQS)divided into severely worn surface(SWun-S)and mildly worn surface(MWun-S)of abandoned gray cast iron guide rail,inspired by the bionic theory,varying forms ...In order to repair and reuse remaining quenching surface(RQS)divided into severely worn surface(SWun-S)and mildly worn surface(MWun-S)of abandoned gray cast iron guide rail,inspired by the bionic theory,varying forms of bionic units such as spot(Sp-S),striation(St-S),and reticulation(Re-S)were fabricated on RQS of gray cast iron through laser processing technology.Firstly,the microstructure,phase composition,and microhardness of bionic units and RQS were analyzed by optical microscopy as well as X-ray diffraction instrument and scanning electron microscopy,respectively.Secondly,the oil lubrication wear experiment was performed on homemade line reciprocating wear machine.The results demonstrated that the bionic units had a significant effect on improving wear resistance of RQS of abandoned guide rail due to the microstructure and higher hardness.In addition,the weight loss ratios of MWun-S,Sp-S,St-S,and Re-S samples were decreased by 36.72%,36.78%,62.26%,and 80.39%,respectively,compared with that of SWun-S sample.The mechanism of wear resistance enhancement was also discussed.展开更多
The micromorphologies of surfaces of several typical plant leaves were investigated by scanning electron microscopy(SEM). Different non-smooth surface characteristics were described and classified. The hydrophobicit...The micromorphologies of surfaces of several typical plant leaves were investigated by scanning electron microscopy(SEM). Different non-smooth surface characteristics were described and classified. The hydrophobicity and anti-adhesion of non-smooth leaf surfaces were quantitatively measured. Results show that the morphology of epidermal cells and the morphology and distribution density of epicuticular wax directly affect the hydrophobicity and anti-adhesion. The surface with uniformly distributed convex units shows the best anti-adhesion, and the surface with regularly arranged trellis units displays better anti-adhesion. In contrast, the surface with randomly distributed hair units performs relatively bad anti-adheslon. The hydrophobic models of papilla-ciliary and fold-setal non-smooth surfaces were set up to determine the impacts of geometric parameters on the hydrophobicity. This study may provide an insight into surface machine molding and apparent morphology design for biomimetics engineering.展开更多
Carnivorous plants,for instance,Dionaea muscipula and Nepenthes pitcher plant,inspired the innovation of advanced stimuli-responsive actuators and lubricant-infused slippery surfaces,respectively.However,hybrid bionic...Carnivorous plants,for instance,Dionaea muscipula and Nepenthes pitcher plant,inspired the innovation of advanced stimuli-responsive actuators and lubricant-infused slippery surfaces,respectively.However,hybrid bionic devices that combine the active and passive prey trapping capabilities of the two kinds of carnivorous plants remain a challenge.Herein,we report a moisture responsive shape-morphing slippery surface that enables both moisture responsive shapemorphing and oil-lubricated water repellency for simultaneous active-and passive-droplet manipulation.The moisture deformable slippery surface is prepared by creating biomimetic microstructures on graphene oxide(GO)membrane via femtosecond laser direct writing and subsequent lubricating with a thin layer of oil on the laser structured reduced GO(LRGO)surface.The integration of a lubricant-infused slippery surface with an LRGO/GO bilayer actuator endows the actuator with droplet sliding ability and promotes the moisture deformation performance due to oil-enhanced water repellency of the inert layer(LRGO).Based on the shape-morphing slippery surface,we prepared a series of proof-of-concept actuators,including a moisture-response Dionaea muscipula actuator,a smart frog tongue,and a smart flower,demonstrating their versatility for active/passive trapping,droplet manipulation,and sensing.展开更多
Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (P...Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (PS) moulds of the mastoid microstructure on lotus leaf surface were prepared respectively by the nano/micro replication technology. And poly(dimethylsiloxane) (PDMS) replicas with the mastoid-like microstructure were prepared from these two kinds of polymer moulds. Scanning electronic microscope (SEM) was employed to investigate the morphology and microstructures on moulds and replicas. Both the static and dynamic contact angles between water droplet and PDMS replicas' surface were also measured. As a result, similar microstructure can be observed clearly on the surface of PDMS replicas and the static contact angle on PDMS replicas was enhanced dramatically by the existence of these microstructures.展开更多
Numerical simulation on the flow fields near the dimpled and the smooth revolution bodies are performed and compared by using SST k-ω turbulence model, to explain the reasons of friction and base drag reductions on t...Numerical simulation on the flow fields near the dimpled and the smooth revolution bodies are performed and compared by using SST k-ω turbulence model, to explain the reasons of friction and base drag reductions on the bionic dimpled surface and the control behaviors of dimpled surface to boundary layer near wall of the revolution body. The simulation results show that the dimpled surface reduces the skin friction drag through reducing the velocity gradient and turbulent intensity, and reduces the base drag through weakening the pumping action on the flow behind the revolution body caused by the external flow; the low speed rotating vortexes in the dimples segregate the external flow and the revolution body; and the low speed rotating vortexes forming in the bottom of dimples can produce negative skin friction.展开更多
Polyimide (PI) film is an important type of insulating material used in inverter-fed motors. Partial discharge (PD) under a sequence of high-frequency square impulses is one of the key factors that lead to prematu...Polyimide (PI) film is an important type of insulating material used in inverter-fed motors. Partial discharge (PD) under a sequence of high-frequency square impulses is one of the key factors that lead to premature failures in insulation systems of inverter-fed motors. In order to explore the damage mechanism of PI film caused by discharge, an aging system of surface discharge under bipolar continuous square impulse voltage (BCSIV) is designed based on the ASTM 2275 01 standard and the electrical aging tests of PI film samples are performed above the partial discharge inception voltage (PDIV). The chemical bonds of PI polymer chains are analyzed through Fourier transform infrared spectroscopy (FTIR) and the dielectric properties of unaged and aged PI samples are investigated by LCR testers HIOKI 3532-50. Finally, the micro-morphology and micro-structure changes of PI film samples are observed through scanning electron microscopy (SEM). The results show that the physical and chemical effects of discharge cut off the chemical bonds of PI polymer chains. The fractures of ether bond (C-O-C) and imide ring (C-N-C) on the backbone of a PI polymer chain leads to the decrease of molecular weight, which results in the degradation of PI polymers and the generation of new chemical groups and materials, like carboxylic acid, ketone, aldehydes, etc. The variation of microscopic structure of PI polymers can change the orientation ability of polarizable units when the samples are under an AC electric field, which would cause the dielectric constant e to increase and dielectric loss tan ~ to decrease. The SEM images show that the degradation path of PI film is initiated from the surface and then gradually extends to the interior with continuous aging. The injection charge could result in the PI macromolecular chain degradation and increase the trap density in the PI oolvmer bulk.展开更多
The regulation of macrophage phenotype(M1/M2)is very important for tissue repair.The macrophage phenotypes could be affected by the physical and chemical parameters of implant surface.The aim of this study was to inve...The regulation of macrophage phenotype(M1/M2)is very important for tissue repair.The macrophage phenotypes could be affected by the physical and chemical parameters of implant surface.The aim of this study was to investigate the effects of surface modifications of titanium metals on macrophage phenotype.The medical pure titanium metals(PT-Ti)subjected to Anodic Oxidation(AO-Ti),Sand Blasting/acid etching(SLA-Ti)and Plasma-sprayed HA coating(HA coating-Ti)were used for regulating the phenotype of macrophage.The results showed that the Raw264.7 cells of AO-Ti groups had no obvious pseudopodia and could spread evenly in all directions.The levels of IL-1βand TNF-α,which belong to pro-inflammatory genes,expressed by the cells on AO-Ti groups were the lowest among all of the modified titanium groups.But,the levels of IL-10 and TGF-β,which belong to anti-inflammatory genes,expressed on AO-Ti groups were much higher than those on the other groups.Furthermore,the AO-Ti could regulate the expression of SOCS-1 and SOCS-3 to affect the active of NF-κB signaling.The gene expression results of macrophages showed that the AO-Ti was more conductive to inhibit the expression of M1-related genes and promote the expression of M2-related genes in an inflammatory environment.The AO-Ti was more beneficial to tissue repair than other modified titanium metals.The results showed that the anodic oxidation is an effective method to regulate the phenotype of macrophages.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.21978202).
文摘Current research on wind energy piezoelectric energy harvesters(PEHs)mainly focuses on tandem smooth cylinder energy harvesters;however,the traditional tandem smooth cylinder energy harvester has low voltage output and narrow energy harvest bandwidth.In this study,a D-type bionic fin is designed and installed on a smooth cylindrical surface to improve its performance.The influence of the spacing ratio on the amplitude and voltage of PEHs with D-type bionic fins added under elastic interference was investigated through wind tunnel tests.Three installation positions were designed:only installed upstream,only installed downstream,and not installed upstream and downstream(BARE).It was found that the maximum displacement of the upstream PEH(UPEH)was not apparently affected by the D-type bionic fin.Contrastingly,the fin changed the maximum amplitude from a small to a large spacing ratio for the downstream PEH(DPEH).D-type bionic fin can enhance energy harvest performance by coupling“coupled vortex-induced vibration”and wake induced galloping,increasing the surface velocity of PEHs and expanding the bandwidth of the voltage harvested by the PEHs.Analysis of the power under the experimental wind speed showed that installing D-type fins in the PEHs can increase the output power of the upstream and downstream PEHs by 392.28%and 13%,respectively,compared with that of the BARE-PEH.Additionally,computational fluid dynamics was used to analyze the flow pattern,wake structure,and lift coefficient of the PEHs,and to explain why the upstream D-type bionic fin installation has an impact on the harvest performance of the upstream and downstream PEHs at a spacing ratio of 1.5.This study provides an efficient and simple scheme for designing wind PEHs.
文摘The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow moldboard. The model surfaces for bionic simulation should be taken from soil animal digging organs, on which the soil motion is similar to what is on the surface of moldboard. By analyzing the distribution of non-smooth units on the body surface of the ground beetle jaw and the soil moving stresses, the design principles of the bionic moldboard for the local and the whole moldboard were presented respectively. As well, the effect of soil moving speed on reducing adhesion, the dimensions relationship between soil particles and non-smooth convexes, the relationship between the enveloping surface of non-smooth convexes and the initial smooth surface of the plow body, and the convex types of the sphere coronal and the pangolin scales,etc.were discussed.
基金The authors are grateful to the National Nature Science Foundation of China (Grant No. 50635030) and the development project on industrialization of bionic non-adhesive cooker (Grant No. 2006D90304010) for the support of this work.
文摘Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique. The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa. The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3μL water drop at room temperature. The measurement of the wetting property showed that the water contact angle of the unmodi- fied as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time. The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure. The structure is composed of the micro-scaled alumina columns and pores. The height of columns and the depth of pores depend on the ano- dizing time. The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT), showing a change in the wettability from hydrophobicity to su- per-hydrophobicity. This improvement in the wetting property chemical modification. is attributed to the decrease in the surface energy caused by the
文摘A scanning electron microscope was used to observe the structures of the setae on the surface of a dung beetle Copris ochus, Motschulsky. There are lots of setae on the body surface, especially on the ventral part surface and lateral to the legs which are different in size, arrangement and shape. These setae have different lengths and many thorns on the whole seta. The top ends of these setae stand up without furcations which direct uprightly towards the surface of the touched soil. By the method of removing these setae, getting the insect weight before and after digging into the dung we affirm farther that the setae on the beetle body surface form the anti-stick and non-adherent gentle interface. The soil machines and components made by imitating the gentle body surface of beetles have favorable non-adherent results.
基金National Natural Science Foundation of China (Grant No.50635030) the International Cooperation key Project of Ministry of Science and Technology of China (Grant No. 2005DFA00850)+2 种基金 The key project about ministry of education of science and technology (Grant No. 105059) the international cooperative of Jilin Province (Grant No.20040703-1) Specialized Research fund for the Doctoral Program of higher Education (Grant No. 20050183064).
文摘Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag.
文摘Inspired by the successful applications of biological non-smoothness,we introduced bionic non-smooth surfaces as appendices into vehicle body design,aiming to further reduce aerodynamic drag.The size range of the non-smooth units with pits and grooves was determined according to our analysis with the mechanisms underlying non-smooth unit mediated aerodynamic drag reduction.The bionic non-smooth units reported here were designed to adapt the structure of a given vehicle body from the point of boundary layer control that reduces the burst and the loss of turbulent kinetic energy.The engine cover lid and vehicle body cap were individually treated with the non-smooth units,and the treated vehicles were subjected to aerodynamic drag coefficient simulation tests using the computational fluid dynamics(CFD) analysis method.The simulation results showed that,in comparison with smooth surfaces,properly designed non-smooth surfaces can have greater effects on drag reduction.The mechanism underlying drag reduction mediated by non-smooth surfaces was revealed by further analyses,in which the effects of non-smooth and smooth surfaces were directly compared.
文摘The study of bionics has found that the skins of many burrow animals which live in soil and stone conditions have an anti wear function, and which is related to their body surfaces’non-smooth morphology. In the present study, bionic non-smooth surfaces are used in roll surface design, and roll models with convex non-smooth surfaces are developed. The rolling wear of non-smooth roll in steel rolling is simulated by the FEM software-ANSYS. The equivalent stress, the node friction stress, and the node contact pressure between the roll and the rolling piece are calculated; and the anti-wear mechanism is analyzed.
基金Project(51405201)supported by the National Natural Science Foundation of ChinaProject(1291120046)supported by the Jiangsu University Advanced Talents Initial Funding,China+1 种基金Project(QC201303)supported by the Open Fund of Automotive Engineering Key Laboratory,ChinaProject(2014M551509)supported by the China Postdoctoral Science Foundation
文摘Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.
基金Shandong Provincial Natural Science Foundation(ZR2023ME077,ZR2023MC140)National Natural Science Foundation of China(52175408)。
文摘The surface of magnesium alloy was laser-processed,and the laser-etched morphology was determined as grooves by observing the surface morphology of sheep rib bone.The wettability of different morphologies was investigated by contact angle test.Through the cell adhesion test,the effects of different morphologies on cell adhesion,growth and migration were investigated.Results show that the wetting angle of the block-shaped surface is smaller than that of the groove-shaped surface,and block-shaped surface has better hydrophilicity.Compared with the smooth surface,the block-shaped surface has better cell adhesion,and the depressions and bumps are full of cells,suggesting that the micropatterns prepared by the laser processing are conducive to the enhancement of biocompatibility.
基金supported in part by the National Natural Science Foundation of China(Nos.51175249,51475230)
文摘Super depth digital microscope was employed to observe the macro-/micro-structure of Coleoptera's elytra.The non-smooth surface textures of elytra have shown superior performance of friction reduction and lubrication.Bionic models of regular hexagonal convex texture and circular concave texture inspired by the beetle were established and verified by numerical calculations and simulations.Further tribological experiments were performed and the results show that the circle texture has the lowest coefficient,which is consistent with the numerical calculations.The research may be further applied to new bionic surface texture designs and also work as a biological template for new bionic inventions.
基金The authors thank the National Natural Science Foundation of China(No.51775231)National Postdoctoral Program for Innovative Talents(BX20180123)+2 种基金China Postdoctoral Science Foundation(2018M641782)Scientific Research Project of Jilin Provincial Department of Education(JJKH20211117KJ)JLU Science and Technology Innovative Research Team(No.2017TD-04).
文摘In order to satisfy the needs of different applications and more complex intelligent devices,smart control of surface wettability will be necessary and desirable,which gradually become a hot spot and focus in the field of interface wetting.Herein,we review interfacial wetting states related to switchable wettability on superwettable materials,including several classical wetting models and liquid adhesive behaviors based on the surface of natural creatures with special wettability.This review mainly focuses on the recent developments of the smart surfaces with switchable wettability and the corresponding regulatory mechanisms under external stimuli,which is mainly governed by the transformation of surface chemical composition and geometrical structures.Among that,various external stimuli such as physical stimulation(temperature,light,electric,magnetic,mechanical stress),chemical stimulation(pH,ion,solvent)and dual or multi-triggered stimulation have been sought out to realize the regulation of surface wettability.Moreover,we also summarize the applications of smart surfaces in different fields,such as oil/water separation,programmable transportation,anti-biofouling,detection and delivery,smart soft robotic etc.Furthermore,current limitations and future perspective in the development of smart wetting surfaces are also given.This review aims to offer deep insights into the recent developments and responsive mechanisms in smart biomimetic surfaces with switchable wettability under external various stimuli,so as to provide a guidance for the design of smart surfaces and expand the scope of both fundamental research and practical applications.
基金supported by Project 985-High Performance Materials of Jilin UniversityProject 985-Bionic Engineering Science and Technology Innovationdouble first-class project by Jilin Province and Jilin University(SXGJXX2017-14).
文摘In order to repair and reuse remaining quenching surface(RQS)divided into severely worn surface(SWun-S)and mildly worn surface(MWun-S)of abandoned gray cast iron guide rail,inspired by the bionic theory,varying forms of bionic units such as spot(Sp-S),striation(St-S),and reticulation(Re-S)were fabricated on RQS of gray cast iron through laser processing technology.Firstly,the microstructure,phase composition,and microhardness of bionic units and RQS were analyzed by optical microscopy as well as X-ray diffraction instrument and scanning electron microscopy,respectively.Secondly,the oil lubrication wear experiment was performed on homemade line reciprocating wear machine.The results demonstrated that the bionic units had a significant effect on improving wear resistance of RQS of abandoned guide rail due to the microstructure and higher hardness.In addition,the weight loss ratios of MWun-S,Sp-S,St-S,and Re-S samples were decreased by 36.72%,36.78%,62.26%,and 80.39%,respectively,compared with that of SWun-S sample.The mechanism of wear resistance enhancement was also discussed.
基金The authors are grateful to the financial support provided by the National Natural Science Foundation of China (No. 50635030);the Key Project of Chinese Ministry of Education (Grant No. 105059).
文摘The micromorphologies of surfaces of several typical plant leaves were investigated by scanning electron microscopy(SEM). Different non-smooth surface characteristics were described and classified. The hydrophobicity and anti-adhesion of non-smooth leaf surfaces were quantitatively measured. Results show that the morphology of epidermal cells and the morphology and distribution density of epicuticular wax directly affect the hydrophobicity and anti-adhesion. The surface with uniformly distributed convex units shows the best anti-adhesion, and the surface with regularly arranged trellis units displays better anti-adhesion. In contrast, the surface with randomly distributed hair units performs relatively bad anti-adheslon. The hydrophobic models of papilla-ciliary and fold-setal non-smooth surfaces were set up to determine the impacts of geometric parameters on the hydrophobicity. This study may provide an insight into surface machine molding and apparent morphology design for biomimetics engineering.
基金the National Natural Science Foundation of China(NSFC)under Grant Nos.#61905087,and#61935008Tsinghua University(School of Materials Science and Engineering)-AVIC Aerodynamics Research Institute Joint Research Center for Advanced Materials and AntiIcing Nos.#JCAMAI-2020-03+2 种基金Fundamental Research Funds for the Central Universities Nos.#2020-JCXK-18Jilin Province Development and Reform Commission Project Nos.#2022C047-4Key Laboratory of Icing and Anti/De-icing of CARDC Nos.#IADL 20210404。
文摘Carnivorous plants,for instance,Dionaea muscipula and Nepenthes pitcher plant,inspired the innovation of advanced stimuli-responsive actuators and lubricant-infused slippery surfaces,respectively.However,hybrid bionic devices that combine the active and passive prey trapping capabilities of the two kinds of carnivorous plants remain a challenge.Herein,we report a moisture responsive shape-morphing slippery surface that enables both moisture responsive shapemorphing and oil-lubricated water repellency for simultaneous active-and passive-droplet manipulation.The moisture deformable slippery surface is prepared by creating biomimetic microstructures on graphene oxide(GO)membrane via femtosecond laser direct writing and subsequent lubricating with a thin layer of oil on the laser structured reduced GO(LRGO)surface.The integration of a lubricant-infused slippery surface with an LRGO/GO bilayer actuator endows the actuator with droplet sliding ability and promotes the moisture deformation performance due to oil-enhanced water repellency of the inert layer(LRGO).Based on the shape-morphing slippery surface,we prepared a series of proof-of-concept actuators,including a moisture-response Dionaea muscipula actuator,a smart frog tongue,and a smart flower,demonstrating their versatility for active/passive trapping,droplet manipulation,and sensing.
基金the National Natural Science Foundation of China(No.20573055)
文摘Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (PS) moulds of the mastoid microstructure on lotus leaf surface were prepared respectively by the nano/micro replication technology. And poly(dimethylsiloxane) (PDMS) replicas with the mastoid-like microstructure were prepared from these two kinds of polymer moulds. Scanning electronic microscope (SEM) was employed to investigate the morphology and microstructures on moulds and replicas. Both the static and dynamic contact angles between water droplet and PDMS replicas' surface were also measured. As a result, similar microstructure can be observed clearly on the surface of PDMS replicas and the static contact angle on PDMS replicas was enhanced dramatically by the existence of these microstructures.
基金Sponsored by the National Natural Science Foundation of China (50635030)the Technology Development Plan of Jilin Province ( 20096032)+1 种基金the Major Program of Science and Technology Development of Jilin Province (09ZDGG001)the Youth Research Start-up Fund of Agriculture Department of Jilin University ( 4305050102K7)
文摘Numerical simulation on the flow fields near the dimpled and the smooth revolution bodies are performed and compared by using SST k-ω turbulence model, to explain the reasons of friction and base drag reductions on the bionic dimpled surface and the control behaviors of dimpled surface to boundary layer near wall of the revolution body. The simulation results show that the dimpled surface reduces the skin friction drag through reducing the velocity gradient and turbulent intensity, and reduces the base drag through weakening the pumping action on the flow behind the revolution body caused by the external flow; the low speed rotating vortexes in the dimples segregate the external flow and the revolution body; and the low speed rotating vortexes forming in the bottom of dimples can produce negative skin friction.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.U1234202,U1134205,51177136,and 51107104)
文摘Polyimide (PI) film is an important type of insulating material used in inverter-fed motors. Partial discharge (PD) under a sequence of high-frequency square impulses is one of the key factors that lead to premature failures in insulation systems of inverter-fed motors. In order to explore the damage mechanism of PI film caused by discharge, an aging system of surface discharge under bipolar continuous square impulse voltage (BCSIV) is designed based on the ASTM 2275 01 standard and the electrical aging tests of PI film samples are performed above the partial discharge inception voltage (PDIV). The chemical bonds of PI polymer chains are analyzed through Fourier transform infrared spectroscopy (FTIR) and the dielectric properties of unaged and aged PI samples are investigated by LCR testers HIOKI 3532-50. Finally, the micro-morphology and micro-structure changes of PI film samples are observed through scanning electron microscopy (SEM). The results show that the physical and chemical effects of discharge cut off the chemical bonds of PI polymer chains. The fractures of ether bond (C-O-C) and imide ring (C-N-C) on the backbone of a PI polymer chain leads to the decrease of molecular weight, which results in the degradation of PI polymers and the generation of new chemical groups and materials, like carboxylic acid, ketone, aldehydes, etc. The variation of microscopic structure of PI polymers can change the orientation ability of polarizable units when the samples are under an AC electric field, which would cause the dielectric constant e to increase and dielectric loss tan ~ to decrease. The SEM images show that the degradation path of PI film is initiated from the surface and then gradually extends to the interior with continuous aging. The injection charge could result in the PI macromolecular chain degradation and increase the trap density in the PI oolvmer bulk.
基金National Key Program for Research and Development of China(No.2016YFC1102700)National Nature Science Foundation of China(Nos.31570966,31771035,32071325)+2 种基金Key Program of Science&Technology Development of Chengdu,China(No.2015-HM01-00142-SF)Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,ChinaCooperation program of Sichuan University and Panzhihua City,China(No.2018CDPZH-15).
文摘The regulation of macrophage phenotype(M1/M2)is very important for tissue repair.The macrophage phenotypes could be affected by the physical and chemical parameters of implant surface.The aim of this study was to investigate the effects of surface modifications of titanium metals on macrophage phenotype.The medical pure titanium metals(PT-Ti)subjected to Anodic Oxidation(AO-Ti),Sand Blasting/acid etching(SLA-Ti)and Plasma-sprayed HA coating(HA coating-Ti)were used for regulating the phenotype of macrophage.The results showed that the Raw264.7 cells of AO-Ti groups had no obvious pseudopodia and could spread evenly in all directions.The levels of IL-1βand TNF-α,which belong to pro-inflammatory genes,expressed by the cells on AO-Ti groups were the lowest among all of the modified titanium groups.But,the levels of IL-10 and TGF-β,which belong to anti-inflammatory genes,expressed on AO-Ti groups were much higher than those on the other groups.Furthermore,the AO-Ti could regulate the expression of SOCS-1 and SOCS-3 to affect the active of NF-κB signaling.The gene expression results of macrophages showed that the AO-Ti was more conductive to inhibit the expression of M1-related genes and promote the expression of M2-related genes in an inflammatory environment.The AO-Ti was more beneficial to tissue repair than other modified titanium metals.The results showed that the anodic oxidation is an effective method to regulate the phenotype of macrophages.