This article provides an overview of the application of bionic technology in marine cruising equipment,discussing its research progress and future development trends.Marine cruising is a crucial means of gaining insig...This article provides an overview of the application of bionic technology in marine cruising equipment,discussing its research progress and future development trends.Marine cruising is a crucial means of gaining insights into the marine environment and conducting scientific research.However,conventional marine cruising equipment faces numerous challenges when dealing with complex and ever-changing marine environments.Bionic technology,as a means of drawing inspiration from the structure and functions of living organisms,offers new approaches and methods to address the challenges faced by marine cruising equipment and has found widespread application.The article primarily focuses on the applications and historical developments of bionic technology in propulsion methods,drag reduction,and surface antifouling.It summarizes the design principles,manufacturing techniques,and optimization methods for marine biomimetic cruising equipment.Finally,this paper analyzes the achievements,challenges,and future directions of bionic technology in marine cruising equipment.The application of bionic technology in marine cruising equipment holds vast potential for development,enabling us to better confront the challenges of marine exploration and research by drawing wisdom from nature and driving advancements in marine science.展开更多
This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterp...This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterparts, bio-inspired soft robots are primarily constructed from flexible materials, conferring upon them remarkable adaptability and flexibility to execute a multitude of tasks in complex environments. However, the classification of their driving technology poses a significant challenge owing to the diverse array of employed driving mechanisms and materials. Here, we classify several common soft actuation methods from the perspectives of the sources of motion in bio-inspired soft robots and their bio-inspired objects, effectively filling the classification system of soft robots, especially bio-inspired soft robots. Then, we summarize the driving principles and structures of various common driving methods from the perspective of bionics, and discuss the latest developments in the field of soft robot actuation from the perspective of driving modalities and methodologies. We then discuss the application directions of bio-inspired soft robots and the latest developments in each direction. Finally, after an in-depth review of various soft bio-inspired robot driving technologies in recent years, we summarize the issues and challenges encountered in the advancement of soft robot actuation technology.展开更多
Current research on wind energy piezoelectric energy harvesters(PEHs)mainly focuses on tandem smooth cylinder energy harvesters;however,the traditional tandem smooth cylinder energy harvester has low voltage output an...Current research on wind energy piezoelectric energy harvesters(PEHs)mainly focuses on tandem smooth cylinder energy harvesters;however,the traditional tandem smooth cylinder energy harvester has low voltage output and narrow energy harvest bandwidth.In this study,a D-type bionic fin is designed and installed on a smooth cylindrical surface to improve its performance.The influence of the spacing ratio on the amplitude and voltage of PEHs with D-type bionic fins added under elastic interference was investigated through wind tunnel tests.Three installation positions were designed:only installed upstream,only installed downstream,and not installed upstream and downstream(BARE).It was found that the maximum displacement of the upstream PEH(UPEH)was not apparently affected by the D-type bionic fin.Contrastingly,the fin changed the maximum amplitude from a small to a large spacing ratio for the downstream PEH(DPEH).D-type bionic fin can enhance energy harvest performance by coupling“coupled vortex-induced vibration”and wake induced galloping,increasing the surface velocity of PEHs and expanding the bandwidth of the voltage harvested by the PEHs.Analysis of the power under the experimental wind speed showed that installing D-type fins in the PEHs can increase the output power of the upstream and downstream PEHs by 392.28%and 13%,respectively,compared with that of the BARE-PEH.Additionally,computational fluid dynamics was used to analyze the flow pattern,wake structure,and lift coefficient of the PEHs,and to explain why the upstream D-type bionic fin installation has an impact on the harvest performance of the upstream and downstream PEHs at a spacing ratio of 1.5.This study provides an efficient and simple scheme for designing wind PEHs.展开更多
The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow...The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow moldboard. The model surfaces for bionic simulation should be taken from soil animal digging organs, on which the soil motion is similar to what is on the surface of moldboard. By analyzing the distribution of non-smooth units on the body surface of the ground beetle jaw and the soil moving stresses, the design principles of the bionic moldboard for the local and the whole moldboard were presented respectively. As well, the effect of soil moving speed on reducing adhesion, the dimensions relationship between soil particles and non-smooth convexes, the relationship between the enveloping surface of non-smooth convexes and the initial smooth surface of the plow body, and the convex types of the sphere coronal and the pangolin scales,etc.were discussed.展开更多
Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodie...Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag.展开更多
Marine fouling is a worldwide problem,which is harmful to the global marine ecological environment and economic benefits.The traditional antifouling strategy usually uses toxic antifouling agents,which gradually expos...Marine fouling is a worldwide problem,which is harmful to the global marine ecological environment and economic benefits.The traditional antifouling strategy usually uses toxic antifouling agents,which gradually exposes a serious environmental problem.Therefore,green,long-term,broad-spectrum and eco-friendly antifouling technologies have been the main target of engineers and researchers.In recent years,many eco-friendly antifouling technologies with broad application prospects have been developed based on the low toxicity and non-toxicity antifouling agents and materials.In this review,contemporary eco-friendly antifouling technologies and materials are summarized into bionic antifouling and non-bionic antifouling strategies(2000-2020).Non-bionic antifouling technologies mainly include protein resistant polymers,antifoulant releasing coatings,foul release coatings,conductive antifouling coatings and photodynamic antifouling technology.Bionic antifouling technologies mainly include the simulated shark skin,whale skin,dolphin skin,coral tentacles,lotus leaves and other biology structures.Brief future research directions and challenges are also discussed in the end,and we expect that this review would boost the development of marine antifouling technologies.展开更多
Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydrop...Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.展开更多
The study of bionics has found that the skins of many burrow animals which live in soil and stone conditions have an anti wear function, and which is related to their body surfaces’non-smooth morphology. In the pres...The study of bionics has found that the skins of many burrow animals which live in soil and stone conditions have an anti wear function, and which is related to their body surfaces’non-smooth morphology. In the present study, bionic non-smooth surfaces are used in roll surface design, and roll models with convex non-smooth surfaces are developed. The rolling wear of non-smooth roll in steel rolling is simulated by the FEM software-ANSYS. The equivalent stress, the node friction stress, and the node contact pressure between the roll and the rolling piece are calculated; and the anti-wear mechanism is analyzed.展开更多
Five kinds of 45# steel samples with concave features on the surface were manufactured using Laser Texturing Technology (LTT). Optimum design theory was used to design the experiment, and a two-level orthogonal table-...Five kinds of 45# steel samples with concave features on the surface were manufactured using Laser Texturing Technology (LTT). Optimum design theory was used to design the experiment, and a two-level orthogonal table-L 16 (2 15 ) design was adopted . Micro-wear and micro-friction experienced by samples with concave surface features and samples with smooth surfaces were compared experimentally. The wear resistance of samples with concave surface features was increased most, and different surface morphologies had different effects on friction and wear properties.展开更多
Inspired by the idea that bionic non-smooth surfaces(BNSS)can reduce water flow resistance,the application of BNSS resistance reduction method in grooves surface of antiskid tire tread pattern has been investigated fo...Inspired by the idea that bionic non-smooth surfaces(BNSS)can reduce water flow resistance,the application of BNSS resistance reduction method in grooves surface of antiskid tire tread pattern has been investigated for increasing hydroplaning velocity of tire by using computational fluid dynamics(CFD)simulation.Three kinds of BNSS(riblet,convex dome,and dimple concave)are arranged in tire tread grooves to study the water flow resistance effects in grooves with non-smooth characteristics.A tire-water coupled model is established and CFD technique is applied to simulating hydroplaning.The simulation results show that BNSS grooves can reduce water flow resistance and increase mean flow rate by disturbing the eddy movement in boundary layers.The drag forces of riblet and dimple surface are lower and drainage capacity is higher than those of smooth surface under the same void space on tread pattern,but it is not in dome.BNSS is a good way to promote antiskid performance without increasing additional groove space;extra tire-road noise production is therefore avoided due to groove space enlargement.展开更多
2025 International Workshop on Bionic Engineering(IWBE 2025)will be jointly held with the 15th Plenary Meeting of ISO/TC 266 Biomimetics on September 23-27 in Vienna,Austria.The workshop is hosted by ISBE together wit...2025 International Workshop on Bionic Engineering(IWBE 2025)will be jointly held with the 15th Plenary Meeting of ISO/TC 266 Biomimetics on September 23-27 in Vienna,Austria.The workshop is hosted by ISBE together with ISO/TC 266 Biomimetics and organized by Vienna University of Technology(TU Wien),Jilin University and Beijing Research Institute of Automation for Machinery Industry Co.,Ltd.This joint event will focuses on bionic technology innovation and standardization.展开更多
This paper focuses on ACF artificial cartilage biomimetic energy-absorbing materials,exploring the entire process from fundamental research to industrial transformation.By analyzing the key nodes and technological bre...This paper focuses on ACF artificial cartilage biomimetic energy-absorbing materials,exploring the entire process from fundamental research to industrial transformation.By analyzing the key nodes and technological breakthroughs in the research and development journey,as well as the market strategies and collaboration models in the transformation practices,this study reveals the profound insights ACF provides to the technological innovation ecosystem in terms of concepts,mechanisms,and resource integration,and constructs a universally applicable and forward-looking paradigm for technological innovation.Aiming to provide comprehensive and in-depth case studies for materials science and the entire technological innovation system,facilitating the innovative development and progress in related areas.展开更多
The four topics are described including the driving force and source of the scientific and technological creation, the definition and history of the bionics, the important significance of bionics in the development of...The four topics are described including the driving force and source of the scientific and technological creation, the definition and history of the bionics, the important significance of bionics in the development of the human beings, and the leading edge and progress of bionics. The appetency of human for the creation is the essential motivity of the innovation in science and technology. Nature and society are the objects for us to cognize and serve, meanwhile, the best teachers for us to learn from them. It is only 5 million years for human's development, but evolution of life has over 3.5 billion years history. Although, copying the creation from the human being is important, however, it has much more potential and opportunity in imitating the nature, and more possibility to promote the ability of original innovation. The significance and progress of bionics are summarized, in this paper, and the leading edges of bionics, in the near future, are forecasted.展开更多
The micromorphologies of surfaces of several typical plant leaves were investigated by scanning electron microscopy(SEM). Different non-smooth surface characteristics were described and classified. The hydrophobicit...The micromorphologies of surfaces of several typical plant leaves were investigated by scanning electron microscopy(SEM). Different non-smooth surface characteristics were described and classified. The hydrophobicity and anti-adhesion of non-smooth leaf surfaces were quantitatively measured. Results show that the morphology of epidermal cells and the morphology and distribution density of epicuticular wax directly affect the hydrophobicity and anti-adhesion. The surface with uniformly distributed convex units shows the best anti-adhesion, and the surface with regularly arranged trellis units displays better anti-adhesion. In contrast, the surface with randomly distributed hair units performs relatively bad anti-adheslon. The hydrophobic models of papilla-ciliary and fold-setal non-smooth surfaces were set up to determine the impacts of geometric parameters on the hydrophobicity. This study may provide an insight into surface machine molding and apparent morphology design for biomimetics engineering.展开更多
Publication rate of patents can be a useful measure of innovation and productivity in fields of science and technology. To assess the growth in industrially-important research, I conducted an appraisal of patents publ...Publication rate of patents can be a useful measure of innovation and productivity in fields of science and technology. To assess the growth in industrially-important research, I conducted an appraisal of patents published between 1985 and 2005 on online databases using keywords chosen to select technologies arising as a result of biological inspiration. Whilst the total number of patents increased over the period examined, those with biomimetic content had increased faster as a proportion of total patent publications. Logistic regression analysis reveals that we may be a little over half way through an initial innovation cycle inspired by biological systems.展开更多
Inspired by the successful applications of biological non-smoothness,we introduced bionic non-smooth surfaces as appendices into vehicle body design,aiming to further reduce aerodynamic drag.The size range of the non-...Inspired by the successful applications of biological non-smoothness,we introduced bionic non-smooth surfaces as appendices into vehicle body design,aiming to further reduce aerodynamic drag.The size range of the non-smooth units with pits and grooves was determined according to our analysis with the mechanisms underlying non-smooth unit mediated aerodynamic drag reduction.The bionic non-smooth units reported here were designed to adapt the structure of a given vehicle body from the point of boundary layer control that reduces the burst and the loss of turbulent kinetic energy.The engine cover lid and vehicle body cap were individually treated with the non-smooth units,and the treated vehicles were subjected to aerodynamic drag coefficient simulation tests using the computational fluid dynamics(CFD) analysis method.The simulation results showed that,in comparison with smooth surfaces,properly designed non-smooth surfaces can have greater effects on drag reduction.The mechanism underlying drag reduction mediated by non-smooth surfaces was revealed by further analyses,in which the effects of non-smooth and smooth surfaces were directly compared.展开更多
As a global concern,environmental protection and energy conservation have attracted significant attention.Due to the large carbon emission of electricity,promoting green and low-carbon transformation of the power indu...As a global concern,environmental protection and energy conservation have attracted significant attention.Due to the large carbon emission of electricity,promoting green and low-carbon transformation of the power industry via the synergistic development of clean energy sources is essential.Rotating machinery plays a crucial role in pumped storage,hydropower generation,and nuclear power generation.Inspired by bionics,non-smooth features of creatures in nature have been introduced into the structure design of efficient rotating machines.First,the concept and classification of bionics are described.Then,the representative applications of non-smooth surface bionic structures in rotating machineries are systematically and comprehensively reviewed,such as groove structure,pit structure,and other non-smooth surfaces.Finally,conclusions are drawn and future directions are presented.The effective design of a bionic structure contributes toward noise reduction,drag reduction and efficiency improvement of rotating machineries.Green and ecological rotating machinery will remarkably reduce energy consumption and contribute to the realization of the“double carbon”goal.展开更多
Gravity sampling is of vital importance for sampling seabed sediments and understanding submarine sedimentary environments and resources.In this study,a new bionic sampler tube(BST)with non-smooth surface for low-dist...Gravity sampling is of vital importance for sampling seabed sediments and understanding submarine sedimentary environments and resources.In this study,a new bionic sampler tube(BST)with non-smooth surface for low-disturbance and rapid sampling is presented.The BST with depressions and swellings on its surface was designed on the model of the non-smooth surface of the dung beetle.Sufficient theoretical calculations,numerical simulations,and experimental tests were carried out to study its sampling performance.The penetration depth,sample length,and frictional drag of the sampler tube were calculated.The finite element model and the coupled Eulerian-Lagrangian(CEL)method were used to analyze and compare its sampling performance.Laboratory and field gravity sampling tests were conducted and the results demonstrated the advantages of the BST in improving sampling performance and in reducing adhesion and drag.展开更多
基金Supported by the Youth Science and Technology Innovation Program of Xiamen Ocean and Fisheries Development Special Funds(No.23ZHZB034QCB38).
文摘This article provides an overview of the application of bionic technology in marine cruising equipment,discussing its research progress and future development trends.Marine cruising is a crucial means of gaining insights into the marine environment and conducting scientific research.However,conventional marine cruising equipment faces numerous challenges when dealing with complex and ever-changing marine environments.Bionic technology,as a means of drawing inspiration from the structure and functions of living organisms,offers new approaches and methods to address the challenges faced by marine cruising equipment and has found widespread application.The article primarily focuses on the applications and historical developments of bionic technology in propulsion methods,drag reduction,and surface antifouling.It summarizes the design principles,manufacturing techniques,and optimization methods for marine biomimetic cruising equipment.Finally,this paper analyzes the achievements,challenges,and future directions of bionic technology in marine cruising equipment.The application of bionic technology in marine cruising equipment holds vast potential for development,enabling us to better confront the challenges of marine exploration and research by drawing wisdom from nature and driving advancements in marine science.
基金Fundamental Research Funds for the Central Universities(No.2024JBMC011)Aeronautical Science Foundation of China(No.2024Z0560M5001).
文摘This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterparts, bio-inspired soft robots are primarily constructed from flexible materials, conferring upon them remarkable adaptability and flexibility to execute a multitude of tasks in complex environments. However, the classification of their driving technology poses a significant challenge owing to the diverse array of employed driving mechanisms and materials. Here, we classify several common soft actuation methods from the perspectives of the sources of motion in bio-inspired soft robots and their bio-inspired objects, effectively filling the classification system of soft robots, especially bio-inspired soft robots. Then, we summarize the driving principles and structures of various common driving methods from the perspective of bionics, and discuss the latest developments in the field of soft robot actuation from the perspective of driving modalities and methodologies. We then discuss the application directions of bio-inspired soft robots and the latest developments in each direction. Finally, after an in-depth review of various soft bio-inspired robot driving technologies in recent years, we summarize the issues and challenges encountered in the advancement of soft robot actuation technology.
基金Supported by National Natural Science Foundation of China(Grant No.21978202).
文摘Current research on wind energy piezoelectric energy harvesters(PEHs)mainly focuses on tandem smooth cylinder energy harvesters;however,the traditional tandem smooth cylinder energy harvester has low voltage output and narrow energy harvest bandwidth.In this study,a D-type bionic fin is designed and installed on a smooth cylindrical surface to improve its performance.The influence of the spacing ratio on the amplitude and voltage of PEHs with D-type bionic fins added under elastic interference was investigated through wind tunnel tests.Three installation positions were designed:only installed upstream,only installed downstream,and not installed upstream and downstream(BARE).It was found that the maximum displacement of the upstream PEH(UPEH)was not apparently affected by the D-type bionic fin.Contrastingly,the fin changed the maximum amplitude from a small to a large spacing ratio for the downstream PEH(DPEH).D-type bionic fin can enhance energy harvest performance by coupling“coupled vortex-induced vibration”and wake induced galloping,increasing the surface velocity of PEHs and expanding the bandwidth of the voltage harvested by the PEHs.Analysis of the power under the experimental wind speed showed that installing D-type fins in the PEHs can increase the output power of the upstream and downstream PEHs by 392.28%and 13%,respectively,compared with that of the BARE-PEH.Additionally,computational fluid dynamics was used to analyze the flow pattern,wake structure,and lift coefficient of the PEHs,and to explain why the upstream D-type bionic fin installation has an impact on the harvest performance of the upstream and downstream PEHs at a spacing ratio of 1.5.This study provides an efficient and simple scheme for designing wind PEHs.
文摘The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow moldboard. The model surfaces for bionic simulation should be taken from soil animal digging organs, on which the soil motion is similar to what is on the surface of moldboard. By analyzing the distribution of non-smooth units on the body surface of the ground beetle jaw and the soil moving stresses, the design principles of the bionic moldboard for the local and the whole moldboard were presented respectively. As well, the effect of soil moving speed on reducing adhesion, the dimensions relationship between soil particles and non-smooth convexes, the relationship between the enveloping surface of non-smooth convexes and the initial smooth surface of the plow body, and the convex types of the sphere coronal and the pangolin scales,etc.were discussed.
基金National Natural Science Foundation of China (Grant No.50635030) the International Cooperation key Project of Ministry of Science and Technology of China (Grant No. 2005DFA00850)+2 种基金 The key project about ministry of education of science and technology (Grant No. 105059) the international cooperative of Jilin Province (Grant No.20040703-1) Specialized Research fund for the Doctoral Program of higher Education (Grant No. 20050183064).
文摘Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag.
基金The authors are grateful for grants received from the National Natural Science Foundation of China(Grant No.51875240)the Jilin Provincial Science and Tcchnology Developmcnt Plan,Young and Middle-Tech Leading Talent and Team Project(Grant No.20200301013RQ)+1 种基金the Department of Science and Technology of Jilin Province(Grant No.20190103114JH)Key Laboratory Fund of National Defense Science and Technology(Grant No.6142005190201).
文摘Marine fouling is a worldwide problem,which is harmful to the global marine ecological environment and economic benefits.The traditional antifouling strategy usually uses toxic antifouling agents,which gradually exposes a serious environmental problem.Therefore,green,long-term,broad-spectrum and eco-friendly antifouling technologies have been the main target of engineers and researchers.In recent years,many eco-friendly antifouling technologies with broad application prospects have been developed based on the low toxicity and non-toxicity antifouling agents and materials.In this review,contemporary eco-friendly antifouling technologies and materials are summarized into bionic antifouling and non-bionic antifouling strategies(2000-2020).Non-bionic antifouling technologies mainly include protein resistant polymers,antifoulant releasing coatings,foul release coatings,conductive antifouling coatings and photodynamic antifouling technology.Bionic antifouling technologies mainly include the simulated shark skin,whale skin,dolphin skin,coral tentacles,lotus leaves and other biology structures.Brief future research directions and challenges are also discussed in the end,and we expect that this review would boost the development of marine antifouling technologies.
基金Project(51405201)supported by the National Natural Science Foundation of ChinaProject(1291120046)supported by the Jiangsu University Advanced Talents Initial Funding,China+1 种基金Project(QC201303)supported by the Open Fund of Automotive Engineering Key Laboratory,ChinaProject(2014M551509)supported by the China Postdoctoral Science Foundation
文摘Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.
文摘The study of bionics has found that the skins of many burrow animals which live in soil and stone conditions have an anti wear function, and which is related to their body surfaces’non-smooth morphology. In the present study, bionic non-smooth surfaces are used in roll surface design, and roll models with convex non-smooth surfaces are developed. The rolling wear of non-smooth roll in steel rolling is simulated by the FEM software-ANSYS. The equivalent stress, the node friction stress, and the node contact pressure between the roll and the rolling piece are calculated; and the anti-wear mechanism is analyzed.
基金The authors are grateful for the financial support provided by the National High Technology Research and Development Program of China(863 Program)(No.2002AA331180)Trans-Century Training Program Foundation for the Talents by the Chinese Ministry of Education(No.20030720)+1 种基金the Foundation for Distin-guished Young Scholars of Jilin Province(Grant No.20040104)the Natural Science Foundation of Jilin Province(No.2002628-2).
文摘Five kinds of 45# steel samples with concave features on the surface were manufactured using Laser Texturing Technology (LTT). Optimum design theory was used to design the experiment, and a two-level orthogonal table-L 16 (2 15 ) design was adopted . Micro-wear and micro-friction experienced by samples with concave surface features and samples with smooth surfaces were compared experimentally. The wear resistance of samples with concave surface features was increased most, and different surface morphologies had different effects on friction and wear properties.
基金Colleges and Universities in Jiangsu Province Pans to Graduate Research and Innovation,China(No.CXLX13_676)Jiangsu Province Six Talents Peak Project,China(No.2011A031)
文摘Inspired by the idea that bionic non-smooth surfaces(BNSS)can reduce water flow resistance,the application of BNSS resistance reduction method in grooves surface of antiskid tire tread pattern has been investigated for increasing hydroplaning velocity of tire by using computational fluid dynamics(CFD)simulation.Three kinds of BNSS(riblet,convex dome,and dimple concave)are arranged in tire tread grooves to study the water flow resistance effects in grooves with non-smooth characteristics.A tire-water coupled model is established and CFD technique is applied to simulating hydroplaning.The simulation results show that BNSS grooves can reduce water flow resistance and increase mean flow rate by disturbing the eddy movement in boundary layers.The drag forces of riblet and dimple surface are lower and drainage capacity is higher than those of smooth surface under the same void space on tread pattern,but it is not in dome.BNSS is a good way to promote antiskid performance without increasing additional groove space;extra tire-road noise production is therefore avoided due to groove space enlargement.
文摘2025 International Workshop on Bionic Engineering(IWBE 2025)will be jointly held with the 15th Plenary Meeting of ISO/TC 266 Biomimetics on September 23-27 in Vienna,Austria.The workshop is hosted by ISBE together with ISO/TC 266 Biomimetics and organized by Vienna University of Technology(TU Wien),Jilin University and Beijing Research Institute of Automation for Machinery Industry Co.,Ltd.This joint event will focuses on bionic technology innovation and standardization.
文摘This paper focuses on ACF artificial cartilage biomimetic energy-absorbing materials,exploring the entire process from fundamental research to industrial transformation.By analyzing the key nodes and technological breakthroughs in the research and development journey,as well as the market strategies and collaboration models in the transformation practices,this study reveals the profound insights ACF provides to the technological innovation ecosystem in terms of concepts,mechanisms,and resource integration,and constructs a universally applicable and forward-looking paradigm for technological innovation.Aiming to provide comprehensive and in-depth case studies for materials science and the entire technological innovation system,facilitating the innovative development and progress in related areas.
文摘The four topics are described including the driving force and source of the scientific and technological creation, the definition and history of the bionics, the important significance of bionics in the development of the human beings, and the leading edge and progress of bionics. The appetency of human for the creation is the essential motivity of the innovation in science and technology. Nature and society are the objects for us to cognize and serve, meanwhile, the best teachers for us to learn from them. It is only 5 million years for human's development, but evolution of life has over 3.5 billion years history. Although, copying the creation from the human being is important, however, it has much more potential and opportunity in imitating the nature, and more possibility to promote the ability of original innovation. The significance and progress of bionics are summarized, in this paper, and the leading edges of bionics, in the near future, are forecasted.
基金The authors are grateful to the financial support provided by the National Natural Science Foundation of China (No. 50635030);the Key Project of Chinese Ministry of Education (Grant No. 105059).
文摘The micromorphologies of surfaces of several typical plant leaves were investigated by scanning electron microscopy(SEM). Different non-smooth surface characteristics were described and classified. The hydrophobicity and anti-adhesion of non-smooth leaf surfaces were quantitatively measured. Results show that the morphology of epidermal cells and the morphology and distribution density of epicuticular wax directly affect the hydrophobicity and anti-adhesion. The surface with uniformly distributed convex units shows the best anti-adhesion, and the surface with regularly arranged trellis units displays better anti-adhesion. In contrast, the surface with randomly distributed hair units performs relatively bad anti-adheslon. The hydrophobic models of papilla-ciliary and fold-setal non-smooth surfaces were set up to determine the impacts of geometric parameters on the hydrophobicity. This study may provide an insight into surface machine molding and apparent morphology design for biomimetics engineering.
文摘Publication rate of patents can be a useful measure of innovation and productivity in fields of science and technology. To assess the growth in industrially-important research, I conducted an appraisal of patents published between 1985 and 2005 on online databases using keywords chosen to select technologies arising as a result of biological inspiration. Whilst the total number of patents increased over the period examined, those with biomimetic content had increased faster as a proportion of total patent publications. Logistic regression analysis reveals that we may be a little over half way through an initial innovation cycle inspired by biological systems.
文摘Inspired by the successful applications of biological non-smoothness,we introduced bionic non-smooth surfaces as appendices into vehicle body design,aiming to further reduce aerodynamic drag.The size range of the non-smooth units with pits and grooves was determined according to our analysis with the mechanisms underlying non-smooth unit mediated aerodynamic drag reduction.The bionic non-smooth units reported here were designed to adapt the structure of a given vehicle body from the point of boundary layer control that reduces the burst and the loss of turbulent kinetic energy.The engine cover lid and vehicle body cap were individually treated with the non-smooth units,and the treated vehicles were subjected to aerodynamic drag coefficient simulation tests using the computational fluid dynamics(CFD) analysis method.The simulation results showed that,in comparison with smooth surfaces,properly designed non-smooth surfaces can have greater effects on drag reduction.The mechanism underlying drag reduction mediated by non-smooth surfaces was revealed by further analyses,in which the effects of non-smooth and smooth surfaces were directly compared.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52205057 and 52175052)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.22KJB460002)+2 种基金China Postdoctoral Science Foundation(Grant No.2022M723702)Taizhou Science and Technology Plan Project(Grant No.22gyb42)in part by the Youth Talent Development Program of Jiangsu University.
文摘As a global concern,environmental protection and energy conservation have attracted significant attention.Due to the large carbon emission of electricity,promoting green and low-carbon transformation of the power industry via the synergistic development of clean energy sources is essential.Rotating machinery plays a crucial role in pumped storage,hydropower generation,and nuclear power generation.Inspired by bionics,non-smooth features of creatures in nature have been introduced into the structure design of efficient rotating machines.First,the concept and classification of bionics are described.Then,the representative applications of non-smooth surface bionic structures in rotating machineries are systematically and comprehensively reviewed,such as groove structure,pit structure,and other non-smooth surfaces.Finally,conclusions are drawn and future directions are presented.The effective design of a bionic structure contributes toward noise reduction,drag reduction and efficiency improvement of rotating machineries.Green and ecological rotating machinery will remarkably reduce energy consumption and contribute to the realization of the“double carbon”goal.
基金the Finance Science and Technology Project of Hainan Province(No.ZDKJ202019)the National Natural Science Foundation of China(No.41976055).
文摘Gravity sampling is of vital importance for sampling seabed sediments and understanding submarine sedimentary environments and resources.In this study,a new bionic sampler tube(BST)with non-smooth surface for low-disturbance and rapid sampling is presented.The BST with depressions and swellings on its surface was designed on the model of the non-smooth surface of the dung beetle.Sufficient theoretical calculations,numerical simulations,and experimental tests were carried out to study its sampling performance.The penetration depth,sample length,and frictional drag of the sampler tube were calculated.The finite element model and the coupled Eulerian-Lagrangian(CEL)method were used to analyze and compare its sampling performance.Laboratory and field gravity sampling tests were conducted and the results demonstrated the advantages of the BST in improving sampling performance and in reducing adhesion and drag.