Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective op...Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do.展开更多
Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In ...Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.展开更多
An efficient method is proposed for the design of finite impulse response(FIR) filter with arbitrary pass band edge,stop band edge frequencies and transition width.The proposed FIR band stop filter is designed using c...An efficient method is proposed for the design of finite impulse response(FIR) filter with arbitrary pass band edge,stop band edge frequencies and transition width.The proposed FIR band stop filter is designed using craziness based particle swarm optimization(CRPSO) approach.Given the filter specifications to be realized,the CRPSO algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristics.In this paper,for the given problem,the realizations of the optimal FIR band pass filters of different orders have been performed.The simulation results have been compared with those obtained by the well accepted evolutionary algorithms,such as Parks and McClellan algorithm(PMA),genetic algorithm(GA) and classical particle swarm optimization(PSO).Several numerical design examples justify that the proposed optimal filter design approach using CRPSO outperforms PMA and PSO,not only in the accuracy of the designed filter but also in the convergence speed and solution quality.展开更多
Since traditional whale optimization algorithms have slow convergence speed,low accuracy and are easy to fall into local optimal solutions,an improved whale optimization algorithm based on mirror selection(WOA-MS)is p...Since traditional whale optimization algorithms have slow convergence speed,low accuracy and are easy to fall into local optimal solutions,an improved whale optimization algorithm based on mirror selection(WOA-MS)is proposed. Specific improvements includes:(1)An adaptive nonlinear inertia weight based on Branin function was introduced to balance global search and local mining.(2) A mirror selection method is proposed to improve the individual quality and speed up the convergence. By optimizing several test functions and comparing the experimental results with other three algorithms,this study verifies that WOA-MS has an excellent optimization performance.展开更多
Biogeography-based optimization(BBO),a natureinspired optimization algorithm(NIOA),has exhibited a huge potential in optimization.In BBO,the good solutions have a large probability to share information with poor solut...Biogeography-based optimization(BBO),a natureinspired optimization algorithm(NIOA),has exhibited a huge potential in optimization.In BBO,the good solutions have a large probability to share information with poor solutions,while poor solutions have a large probability to accept the information from others.In original BBO,calculating for migration rates is based on solutions' ranking.From the ranking,it can be known that which solution is better and which one is worse.Based on the ranking,the migration rates are calculated to help BBO select good features and poor features.The differences among results can not be reflected,which will result in an improper migration rate calculating.Two new ways are proposed to calculate migration rates,which is helpful for BBO to obtain a suitable assignment of migration rates and furthermore affect algorithms ' performance.The ranking of solutions is no longer integers,but decimals.By employing the strategies,the ranking can not only reflect the orders of solutions,but also can reflect more details about solutions' distances.A set of benchmarks,which include 14 functions,is employed to compare the proposed approaches with other algorithms.The results demonstrate that the proposed approaches are feasible and effective to enhance BBO's performance.展开更多
User response or reaction to navigation applications is influenced by relevance in geographic information, in terms of cartographic context and content delivered within a definite time, providing a direct impact to ou...User response or reaction to navigation applications is influenced by relevance in geographic information, in terms of cartographic context and content delivered within a definite time, providing a direct impact to outcome or consequence based on decision making and hence user reaction. Location Based Navigation Services (LBNS) have continuously advanced in cartographic visualization, making maps interpretation easy and ubiquitous to any user, as compared to pre-historic times when maps were a preserve of a few. Despite rapid growth in LBNS, there exist challenges that may be characterized as technical and non-technical challenges, among them being process of conveying geospatial information to user. LBNS system deliver appropriate information to a user through smartphone (mobile device) for effective decision making and response within a given time span. This research focuses on optimization of cartographic content for contextual information in LBNS to users, based on prevailing circumstances of various components that constitute it. The research looks into Geographic Information Retrieval (GIR), as a technical challenge centered on a non-technical issue of social being of user satisfaction, leading to decision making in LBNS, hence response and outcome. Though advanced technologically, current LBNS on information sourcing depends on user manual web pages navigation and maneuver, this can be painstaking and time consuming that it may cause unnecessary delay in information delivery, resulting to delayed information response time (DIRT). This in turn may lead to unappropriate decision making with erroneous reaction or response being taken, resulting in loss of opportunity, resources, time and even life. Optimization in LBNS is achieved by a mathematical relationship developed between user status, mobile device variables against cartographic content. The relationship is in turn applied in LBNS android application to fulfill optimization solution for user consumption.展开更多
A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composit...A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composite pressure vessels. The algorithm and efficiency of SBPSO are displayed through numerical examples. A model for filament-wound composite pressure vessels with metallic liner is then studied by netting analysis and its responses are analyzed by using Finite element method (performed by software ANSYS). An optimization problem for maximizing the performance factor is formulated by choosing the winding orientation of the helical plies in the cylindrical portion, the thickness of metal liner and the drop off region size as the design variables. Strength constraints for composite layers and the metal liner are constructed by using Tsai-Wu failure criterion and Mises failure criterion respectively. Numerical examples show that the method proposed can effectively solve the RBRD problem, and the optimal results of the proposed model can satisfy certain reliability requirement and have the robustness to the fluctuation of design variables.展开更多
The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previ...The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption.展开更多
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici...Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.展开更多
The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many exi...The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many existing algorithms, a traditional genetic algorithm will have limited success with this problem class, particularly as the problem size increases. A rule based genetic algorithm is proposed and demonstrated on sets of traveling salesman problems of increasing size. The solution character as well as the solution efficiency is compared against a simulated annealing technique as well as a standard genetic algorithm. The rule based genetic algorithm is shown to provide superior performance for all problem sizes considered. Furthermore, a post optimal analysis provides insight into which rules were successfully applied during the solution process which allows for rule modification to further enhance performance.展开更多
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding....In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.展开更多
Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node...Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).展开更多
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro...In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.展开更多
This paper introduces an optimization algorithm, the hummingbirds optimization algorithm(HOA), which is inspired by the foraging process of hummingbirds. The proposed algorithm includes two phases: a self-searching ph...This paper introduces an optimization algorithm, the hummingbirds optimization algorithm(HOA), which is inspired by the foraging process of hummingbirds. The proposed algorithm includes two phases: a self-searching phase and a guide-searching phase. With these two phases, the exploration and exploitation abilities of the algorithm can be balanced. Both the constrained and unconstrained benchmark functions are employed to test the performance of HOA. Ten classic benchmark functions are considered as unconstrained benchmark functions. Meanwhile, two engineering design optimization problems are employed as constrained benchmark functions. The results of these experiments demonstrate HOA is efficient and capable of global optimization.展开更多
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th...The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.展开更多
An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to...An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP.展开更多
As the proportion of natural gas consumption in the energy market gradually increases,optimizing the design of gas storage surface system(GSSS)has become a current research focus.Existing studies on the two independen...As the proportion of natural gas consumption in the energy market gradually increases,optimizing the design of gas storage surface system(GSSS)has become a current research focus.Existing studies on the two independent injection pipeline network(InNET)and production pipeline network(ProNET)for underground natural gas storage(UNGS)are scarce,and no optimization methods have been proposed yet.Therefore,this paper focuses on the flow and pressure boundary characteristics of the GSSS.It constructs systematic models,including the injection multi-condition coupled model(INM model),production multi-condition coupled model(PRM model),injection single condition model(INS model)and production single condition model(PRS model)to optimize the design parameters.Additionally,this paper proposes a hybrid genetic algorithm based on generalized reduced gradient(HGA-GRG)for solving the models.The models and algorithm are applied to a case study with the objective of minimizing the cost of the pipeline network.For the GSSS,nine different condition scenarios are considered,and iterative process analysis and sensitivity analysis of these scenarios are conducted.Moreover,simulation scenarios are set up to verify the applicability of different scenarios to the boundaries.The research results show that the cost of the InNET considering the coupled pressure boundary is 64.4890×10^(4) CNY,and the cost of the ProNET considering coupled flow and pressure boundaries is 87.7655×10^(4) CNY,demonstrating greater applicability and economy than those considering only one or two types of conditions.The algorithms and models proposed in this paper provide an effective means for the design of parameters for GSSS.展开更多
To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained ...To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems.展开更多
Greenhouse system (GHS) is the worldwide fastest growing phenomenon in agricultural sector. Greenhouse models are essential for improving control efficiencies. The Relative Gain Analysis (RGA) reveals that the GHS con...Greenhouse system (GHS) is the worldwide fastest growing phenomenon in agricultural sector. Greenhouse models are essential for improving control efficiencies. The Relative Gain Analysis (RGA) reveals that the GHS control is complex due to 1) high nonlinear interactions between the biological subsystem and the physical subsystem and 2) strong coupling between the process variables such as temperature and humidity. In this paper, a decoupled linear cooling model has been developed using a feedback-feed forward linearization technique. Further, based on the model developed Internal Model Control (IMC) based Proportional Integrator (PI) controller parameters are optimized using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) to achieve minimum Integral Square Error (ISE). The closed loop control is carried out using the above control schemes for set-point change and disturbance rejection. Finally, closed loop servo and servo-regulatory responses of GHS are compared quantitatively as well as qualitatively. The results implicate that IMC based PI controller using PSO provides better performance than the IMC based PI controller using GA. Also, it is observed that the disturbance introduced in one loop will not affect the other loop due to feedback-feed forward linearization and decoupling. Such a control scheme used for GHS would result in better yield in production of crops such as tomato, lettuce and broccoli.展开更多
基金supported by Zhejiang Provincial Natural Science Foundation of China (No.Y1090866)supported by Dan Simon and Dawei Du of Cleveland State University, and Jeff Abell of General Motors, whose ideas were instrumental in the development of this research
文摘Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275366,50875190,51305311)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134219110002)
文摘Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.
文摘An efficient method is proposed for the design of finite impulse response(FIR) filter with arbitrary pass band edge,stop band edge frequencies and transition width.The proposed FIR band stop filter is designed using craziness based particle swarm optimization(CRPSO) approach.Given the filter specifications to be realized,the CRPSO algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristics.In this paper,for the given problem,the realizations of the optimal FIR band pass filters of different orders have been performed.The simulation results have been compared with those obtained by the well accepted evolutionary algorithms,such as Parks and McClellan algorithm(PMA),genetic algorithm(GA) and classical particle swarm optimization(PSO).Several numerical design examples justify that the proposed optimal filter design approach using CRPSO outperforms PMA and PSO,not only in the accuracy of the designed filter but also in the convergence speed and solution quality.
基金supported by the Natural Science Foundation of Jiangsu Province (No. BK20151479)the Open Foundation of Graduate Innovation Base in Nanjing University of Aeronautics and Astronautics(No. kfjj20190736)
文摘Since traditional whale optimization algorithms have slow convergence speed,low accuracy and are easy to fall into local optimal solutions,an improved whale optimization algorithm based on mirror selection(WOA-MS)is proposed. Specific improvements includes:(1)An adaptive nonlinear inertia weight based on Branin function was introduced to balance global search and local mining.(2) A mirror selection method is proposed to improve the individual quality and speed up the convergence. By optimizing several test functions and comparing the experimental results with other three algorithms,this study verifies that WOA-MS has an excellent optimization performance.
基金National Natural Science Foundations of China(Nos.61503287,71371142,61203250)Program for Young Excellent Talents in Tongji University,China(No.2014KJ046)+1 种基金Program for New Century Excellent Talents in University of Ministry of Education of ChinaPh.D.Programs Foundation of Ministry of Education of China(No.20100072110038)
文摘Biogeography-based optimization(BBO),a natureinspired optimization algorithm(NIOA),has exhibited a huge potential in optimization.In BBO,the good solutions have a large probability to share information with poor solutions,while poor solutions have a large probability to accept the information from others.In original BBO,calculating for migration rates is based on solutions' ranking.From the ranking,it can be known that which solution is better and which one is worse.Based on the ranking,the migration rates are calculated to help BBO select good features and poor features.The differences among results can not be reflected,which will result in an improper migration rate calculating.Two new ways are proposed to calculate migration rates,which is helpful for BBO to obtain a suitable assignment of migration rates and furthermore affect algorithms ' performance.The ranking of solutions is no longer integers,but decimals.By employing the strategies,the ranking can not only reflect the orders of solutions,but also can reflect more details about solutions' distances.A set of benchmarks,which include 14 functions,is employed to compare the proposed approaches with other algorithms.The results demonstrate that the proposed approaches are feasible and effective to enhance BBO's performance.
文摘User response or reaction to navigation applications is influenced by relevance in geographic information, in terms of cartographic context and content delivered within a definite time, providing a direct impact to outcome or consequence based on decision making and hence user reaction. Location Based Navigation Services (LBNS) have continuously advanced in cartographic visualization, making maps interpretation easy and ubiquitous to any user, as compared to pre-historic times when maps were a preserve of a few. Despite rapid growth in LBNS, there exist challenges that may be characterized as technical and non-technical challenges, among them being process of conveying geospatial information to user. LBNS system deliver appropriate information to a user through smartphone (mobile device) for effective decision making and response within a given time span. This research focuses on optimization of cartographic content for contextual information in LBNS to users, based on prevailing circumstances of various components that constitute it. The research looks into Geographic Information Retrieval (GIR), as a technical challenge centered on a non-technical issue of social being of user satisfaction, leading to decision making in LBNS, hence response and outcome. Though advanced technologically, current LBNS on information sourcing depends on user manual web pages navigation and maneuver, this can be painstaking and time consuming that it may cause unnecessary delay in information delivery, resulting to delayed information response time (DIRT). This in turn may lead to unappropriate decision making with erroneous reaction or response being taken, resulting in loss of opportunity, resources, time and even life. Optimization in LBNS is achieved by a mathematical relationship developed between user status, mobile device variables against cartographic content. The relationship is in turn applied in LBNS android application to fulfill optimization solution for user consumption.
基金supported by the Natural Science Foundation of China(No.10772070)National Basic Research Program of China(No.2011CB013800)
文摘A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composite pressure vessels. The algorithm and efficiency of SBPSO are displayed through numerical examples. A model for filament-wound composite pressure vessels with metallic liner is then studied by netting analysis and its responses are analyzed by using Finite element method (performed by software ANSYS). An optimization problem for maximizing the performance factor is formulated by choosing the winding orientation of the helical plies in the cylindrical portion, the thickness of metal liner and the drop off region size as the design variables. Strength constraints for composite layers and the metal liner are constructed by using Tsai-Wu failure criterion and Mises failure criterion respectively. Numerical examples show that the method proposed can effectively solve the RBRD problem, and the optimal results of the proposed model can satisfy certain reliability requirement and have the robustness to the fluctuation of design variables.
基金Project(62073342)supported by the National Natural Science Foundation of ChinaProject(2014 AA 041803)supported by the Hi-tech Research and Development Program of China。
文摘The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant 51490662)the Funds for Distinguished Young Scientists of Hunan Province (Grant 14JJ1016)+1 种基金the State Key Program of the National Science Foundation of China (11232004)the Heavy-duty Tractor Intelligent Manufacturing Technology Research and System Development (Grant 2016YFD0701105)
文摘Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of China (61304079, 61125306, 61034002), the Open Research Project from SKLMCCS (20120106), the Fundamental Research Funds for the Central Universities (FRF-TP-13-018A), and the China Postdoctoral Science. Foundation (201_3M_ 5305_27)_ _ _
文摘为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。
文摘The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many existing algorithms, a traditional genetic algorithm will have limited success with this problem class, particularly as the problem size increases. A rule based genetic algorithm is proposed and demonstrated on sets of traveling salesman problems of increasing size. The solution character as well as the solution efficiency is compared against a simulated annealing technique as well as a standard genetic algorithm. The rule based genetic algorithm is shown to provide superior performance for all problem sizes considered. Furthermore, a post optimal analysis provides insight into which rules were successfully applied during the solution process which allows for rule modification to further enhance performance.
文摘In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.
文摘Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).
基金supported by the National Key R&D Plan(2020YFB1712902)the National Natural Science Foundation of China(52075036).
文摘In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.
基金supported by the National Natural Science Foundation of China(61601505)
文摘This paper introduces an optimization algorithm, the hummingbirds optimization algorithm(HOA), which is inspired by the foraging process of hummingbirds. The proposed algorithm includes two phases: a self-searching phase and a guide-searching phase. With these two phases, the exploration and exploitation abilities of the algorithm can be balanced. Both the constrained and unconstrained benchmark functions are employed to test the performance of HOA. Ten classic benchmark functions are considered as unconstrained benchmark functions. Meanwhile, two engineering design optimization problems are employed as constrained benchmark functions. The results of these experiments demonstrate HOA is efficient and capable of global optimization.
基金Supported by the National Natural Science Foundation of China(1117202591116)
文摘The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.
基金National Key Basic Research and Development Program of China(No.2013CB329503)National Natural Science Foundation of China(No.61174189)the Doctoral Program Foundation of Institutions of Higher Education of China(No.20130002110057)
文摘An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP.
基金funded by the National Natural Science Foun-dation of China,grant number 51704253 and 52474084。
文摘As the proportion of natural gas consumption in the energy market gradually increases,optimizing the design of gas storage surface system(GSSS)has become a current research focus.Existing studies on the two independent injection pipeline network(InNET)and production pipeline network(ProNET)for underground natural gas storage(UNGS)are scarce,and no optimization methods have been proposed yet.Therefore,this paper focuses on the flow and pressure boundary characteristics of the GSSS.It constructs systematic models,including the injection multi-condition coupled model(INM model),production multi-condition coupled model(PRM model),injection single condition model(INS model)and production single condition model(PRS model)to optimize the design parameters.Additionally,this paper proposes a hybrid genetic algorithm based on generalized reduced gradient(HGA-GRG)for solving the models.The models and algorithm are applied to a case study with the objective of minimizing the cost of the pipeline network.For the GSSS,nine different condition scenarios are considered,and iterative process analysis and sensitivity analysis of these scenarios are conducted.Moreover,simulation scenarios are set up to verify the applicability of different scenarios to the boundaries.The research results show that the cost of the InNET considering the coupled pressure boundary is 64.4890×10^(4) CNY,and the cost of the ProNET considering coupled flow and pressure boundaries is 87.7655×10^(4) CNY,demonstrating greater applicability and economy than those considering only one or two types of conditions.The algorithms and models proposed in this paper provide an effective means for the design of parameters for GSSS.
文摘To solve single-objective constrained optimization problems,a new population-based evolutionary algorithm with elite strategy(PEAES) is proposed with the concept of single and multi-objective optimization.Constrained functions are combined to be an objective function.During the evolutionary process,the current optimal solution is found and treated as the reference point to divide the population into three sub-populations:one feasible and two infeasible ones.Different evolutionary operations of single or multi-objective optimization are respectively performed in each sub-population with elite strategy.Thirteen famous benchmark functions are selected to evaluate the performance of PEAES in comparison of other three optimization methods.The results show the proposed method is valid in efficiency,precision and probability for solving single-objective constrained optimization problems.
文摘Greenhouse system (GHS) is the worldwide fastest growing phenomenon in agricultural sector. Greenhouse models are essential for improving control efficiencies. The Relative Gain Analysis (RGA) reveals that the GHS control is complex due to 1) high nonlinear interactions between the biological subsystem and the physical subsystem and 2) strong coupling between the process variables such as temperature and humidity. In this paper, a decoupled linear cooling model has been developed using a feedback-feed forward linearization technique. Further, based on the model developed Internal Model Control (IMC) based Proportional Integrator (PI) controller parameters are optimized using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) to achieve minimum Integral Square Error (ISE). The closed loop control is carried out using the above control schemes for set-point change and disturbance rejection. Finally, closed loop servo and servo-regulatory responses of GHS are compared quantitatively as well as qualitatively. The results implicate that IMC based PI controller using PSO provides better performance than the IMC based PI controller using GA. Also, it is observed that the disturbance introduced in one loop will not affect the other loop due to feedback-feed forward linearization and decoupling. Such a control scheme used for GHS would result in better yield in production of crops such as tomato, lettuce and broccoli.