期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Elucidating the removal mechanism of N,N-dimethyldithiocarbamate in an anaerobic-anoxic-oxic activated sludge system 被引量:2
1
作者 Yongmei Li Xianzhong Cao Lin Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第3期566-574,共9页
N,N-Dimethyldithiocarbamate (DMDTC) is a typical precursor of N-nitrosodimethylamine (NDMA). Based on separate hydrolysis, sorption and biodegradation studies of DMDTC, a laboratory-scale anaerobic-anoxic-oxic (... N,N-Dimethyldithiocarbamate (DMDTC) is a typical precursor of N-nitrosodimethylamine (NDMA). Based on separate hydrolysis, sorption and biodegradation studies of DMDTC, a laboratory-scale anaerobic-anoxic-oxic (AAO) system was established to investigate the removal mechanism of DMDTC in this nutrient removal biological treatment system. DMDTC hydrolyzed easily in water solution under either acidic conditions or strong alkaline conditions, and dimethylamine (DMA) was the main hydrolysate. Under anaerobic, anoxic or oxic conditions, DMDTC was biodegraded and completely mineralized. Furthermore, DMA was the main intermediate in DMDTC biodegradation. In the AAO system, the optimal conditions for both nutrient and DMDTC removal were hydraulic retention time 8 hr, sludge retention time 20 day, mixed-liquor return ratio 3:1 and sludge return ratio 1:1. Under these conditions, the removal efficiency of DMDTC reached 99.5%; the removal efficiencies of chemical organic demand, ammonium nitrogen, total nitrogen and total phosphorus were 90%, 98%, 81% and 93%, respectively. Biodegradation is the dominant mechanism for DMDTC removal in the AAO system, which was elucidated as consisting of two steps: first, DMDTC is transformed to DMA in the anaerobic and anoxic units, and then DMA is mineralized to CO2 and NH3 in the anoxic and oxic units. The mineralization of DMDTC in the biological treatment system can effectively avoid the formation of NDMA during subsequent disinfection processes. 展开更多
关键词 N N-dimethyldithioc arbamate hydrolysis biodegradation aerobic processes anaerobic processes wastewater treatment
原文传递
Bioavailability of wastewater derived dissolved organic nitrogen to green microalgae Selenastrum capricornutum,Chlamydomonas reinhardtii,and Chlorella vulgaris with/without presence of bacteria 被引量:1
2
作者 Jingyi Sun Halis Simsek 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第7期346-355,共10页
Effluent dissolved organic nitrogen(DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits.Bioavailable DON(ABDON) is a portion... Effluent dissolved organic nitrogen(DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits.Bioavailable DON(ABDON) is a portion of DON utilized by algae or algae + bacteria,while biodegradable DON(BDON) is a portion of DON decomposable by bacteria.ABDON and BDON in a two-stage trickling filter(TF) wastewater treatment plant was evaluated using three different microalgal species,Selenastrum capricornutum,Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria.Results showed that up to80% of DON was bioavailable to algae or algae + bacteria inoculum while up to 60% of DON was biodegradable in all the samples.Results showed that C.reinhardtii and C.vulgaris can be used as a test species the same as S.capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species. 展开更多
关键词 Bioavailable dissolved organic nitrogen Biodegradable dissolved organic nitrogen Dissolved organic nitrogen Algae Trickling filter process Wastewater
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部