In this paper,the quasi-static large deformation,wrinkling and fracture behaviors of bimodular structures and membranes are studied with an implicit bond-based peridynamic computational framework.Firstly,the constant ...In this paper,the quasi-static large deformation,wrinkling and fracture behaviors of bimodular structures and membranes are studied with an implicit bond-based peridynamic computational framework.Firstly,the constant and tangential stiffness matrices of the implicit peridynamic formulations for the nonlinear problems are derived,respectively.The former is con structed from the linearization of the bond strain on the basis of the geometric approximation while the latter is established according to the linearization of the pairwise force by using first-order Taylor’s expansion.Then,a bimodular material model in peridynamics is developed,in which the tensile or compressive behavior of the material at each point is conveniently described by the tensile or compressive states of the bonds in its neighborhood.Moreover,the bimodular material model is extended to deal with the wrinkling and fracture problems of membranes by setting the compressive micro-modulus to be zero.In addition,the incremental-iterative algorithm is adopted to obtain the convergent solutions of the nonlinear problems.Finally,several representative numerical examples are presented and the results demonstrate the accuracy and efficiency of the proposed method for the large deformation,wrinkling and fracture analyses of bimodular structures and membranes.展开更多
Bi-modulus materials with different mechanical responses in tension and compression are often found in civil,composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and c...Bi-modulus materials with different mechanical responses in tension and compression are often found in civil,composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions.The original problem is transformed into a standard linear complementarity problem(LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes.Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.展开更多
A cDNA clone of a single-copy gene designated SbPRP was isolated and characterized from 2-week-old soybean seedlings. It putatively encodes a bimodular protein similar to develop-mentally regulated proteins in other p...A cDNA clone of a single-copy gene designated SbPRP was isolated and characterized from 2-week-old soybean seedlings. It putatively encodes a bimodular protein similar to develop-mentally regulated proteins in other plant species. The deduced amino acid sequence consists of 126 amino acids with a distinct proline-rich domain (17 amino acids) and a long hydrophobically cysteine-rich domain (84 amino acids), plus a signal peptide of 25 amino acids in N terminal. SbPRP mRNA transcripts accumulated in an organ specific manner. It can be detected in leaves and epicotyls of soybean seedlings, whereas virtually expression signal of SbPRP was not detected in cotyledons, hypocotyls and roots. Further Northern hybridization suggested that SbPRP steady-state mRNA level accumulated differentially not only in response to salicylic acid, but to the inoculation of soybean mosaic virus Sa strain. Also it was responsive to drought treatment and salt (NaCI) stress. Therefore it is likely that SbPRP functions as a defense gene in soybean.展开更多
基金The work was supported by the National Natural Science Foundation of China(Grants 11672062,11772082,and 11672063)the 111 Project(Grant B08014)the Fundamental Research Funds for the Central Universities.
文摘In this paper,the quasi-static large deformation,wrinkling and fracture behaviors of bimodular structures and membranes are studied with an implicit bond-based peridynamic computational framework.Firstly,the constant and tangential stiffness matrices of the implicit peridynamic formulations for the nonlinear problems are derived,respectively.The former is con structed from the linearization of the bond strain on the basis of the geometric approximation while the latter is established according to the linearization of the pairwise force by using first-order Taylor’s expansion.Then,a bimodular material model in peridynamics is developed,in which the tensile or compressive behavior of the material at each point is conveniently described by the tensile or compressive states of the bonds in its neighborhood.Moreover,the bimodular material model is extended to deal with the wrinkling and fracture problems of membranes by setting the compressive micro-modulus to be zero.In addition,the incremental-iterative algorithm is adopted to obtain the convergent solutions of the nonlinear problems.Finally,several representative numerical examples are presented and the results demonstrate the accuracy and efficiency of the proposed method for the large deformation,wrinkling and fracture analyses of bimodular structures and membranes.
基金supported by the National Natural Science Foundation of China (Grants 11232003, 91315302, 11502035)the Open Research Foundation (Grant GZ1404) of State Key Laboratory of Structural Analysis for Industrial Equipment at Dalian University of Technology
文摘Bi-modulus materials with different mechanical responses in tension and compression are often found in civil,composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions.The original problem is transformed into a standard linear complementarity problem(LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes.Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.
基金the National Key Basic Research Special Funds of China (Grant No. G1998010209) and National High-Tech Program of China.
文摘A cDNA clone of a single-copy gene designated SbPRP was isolated and characterized from 2-week-old soybean seedlings. It putatively encodes a bimodular protein similar to develop-mentally regulated proteins in other plant species. The deduced amino acid sequence consists of 126 amino acids with a distinct proline-rich domain (17 amino acids) and a long hydrophobically cysteine-rich domain (84 amino acids), plus a signal peptide of 25 amino acids in N terminal. SbPRP mRNA transcripts accumulated in an organ specific manner. It can be detected in leaves and epicotyls of soybean seedlings, whereas virtually expression signal of SbPRP was not detected in cotyledons, hypocotyls and roots. Further Northern hybridization suggested that SbPRP steady-state mRNA level accumulated differentially not only in response to salicylic acid, but to the inoculation of soybean mosaic virus Sa strain. Also it was responsive to drought treatment and salt (NaCI) stress. Therefore it is likely that SbPRP functions as a defense gene in soybean.