期刊文献+
共找到361篇文章
< 1 2 19 >
每页显示 20 50 100
The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation 被引量:4
1
作者 左进明 张耀明 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期69-75,共7页
This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton)... This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations. 展开更多
关键词 coupled Burgers equation high-order Boussinesq-Burgers equation Hirota's bilinear method
原文传递
Soliton Solutions of Coupled KdV System from Hirota's Bilinear Direct Method 被引量:4
2
作者 YANG Jian-Rong MAO Jie-Jian 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第1期22-26,共5页
With Hirota's bilinear direct method, we study the special coupled KdV system to obtain its new soliton solutions. Then we further discuss soliton evolution, corresponding structures, and interesting interactive phen... With Hirota's bilinear direct method, we study the special coupled KdV system to obtain its new soliton solutions. Then we further discuss soliton evolution, corresponding structures, and interesting interactive phenomena in detail with plot. As a result, we find that after the interaction, the solitons make elastic collision and there are no exchanges of their physical quantities including energy, velocity and shape except the phase shift. 展开更多
关键词 coupled KdV system Hirota's bilinear method soliton solutions interactive property
在线阅读 下载PDF
Integrable discretization of soliton equations via bilinear method and Backlund transformation
3
作者 ZHANG Ying Nan CHANG Xiang Ke +2 位作者 HU Juan HU Xing Biao TAM Hon-Wah 《Science China Mathematics》 SCIE CSCD 2015年第2期279-296,共18页
We present a systematic procedure to derive discrete analogues of integrable PDEs via Hirota’s bilinear method.This approach is mainly based on the compatibility between an integrable system and its B¨acklund tr... We present a systematic procedure to derive discrete analogues of integrable PDEs via Hirota’s bilinear method.This approach is mainly based on the compatibility between an integrable system and its B¨acklund transformation.We apply this procedure to several equations,including the extended Korteweg-deVries(Kd V)equation,the extended Kadomtsev-Petviashvili(KP)equation,the extended Boussinesq equation,the extended Sawada-Kotera(SK)equation and the extended Ito equation,and obtain their associated semidiscrete analogues.In the continuum limit,these differential-difference systems converge to their corresponding smooth equations.For these new integrable systems,their B¨acklund transformations and Lax pairs are derived. 展开更多
关键词 integrable discretization bilinear method Backlund transformation
原文传递
Soliton Interactions and Collision Dynamics in a Variable-Coefficient Coupled Nonlocal Nonlinear Schrödinger Systems
4
作者 Xinnan Cui Zhiyang Zhang +2 位作者 Muwei Liu Fenghua Qi Wenjun Liu 《Chinese Physics Letters》 2025年第10期68-74,共7页
The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations ... The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems. 展开更多
关键词 two soliton solutions soliton interactions assigning different functions collision dynamics nonstandard hirota bilinear methodthe nonstandard hirota bilinear method variable coefficient coupled nonlocal nonlinear schr dinger systems coupled nonlocal nonlinear schr dinger equations variable coefficients
原文传递
An Augmented Lagrangian based Semismooth Newton Method for a Class of Bilinear Programming Problems
5
作者 HE Su-xiang LIU Yan WANG Chuan-mei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第4期446-459,共14页
This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original va... This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original variables and Lagrange multipliers.Without strict complementarity,the convergence of the method is studied by means of theories of semismooth analysis under the linear independence constraint qualification and strong second order sufficient condition.At last,numerical results are reported to show the performance of the proposed method. 展开更多
关键词 SEMISMOOTH NEWTON method constrained bilinear programming problems AUGMENTED LAGRANGIAN STRICT complementarity
在线阅读 下载PDF
Double-Pole Solution and Soliton-Antisoliton Pair Solution of MNLSE/DNLSE Based upon Hirota Method
6
作者 LUO Runjia ZHOU Guoquan 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第5期430-438,共9页
Hirota method is applied to solve the modified nonlinear Schrodinger equation/the derivative nonlinear Schrodinger equation(MNLSE/DNLSE) under nonvanishing boundary conditions(NVBC) and lead to a single and double-pol... Hirota method is applied to solve the modified nonlinear Schrodinger equation/the derivative nonlinear Schrodinger equation(MNLSE/DNLSE) under nonvanishing boundary conditions(NVBC) and lead to a single and double-pole soliton solution in an explicit form. The general procedures of Hirota method are presented, as well as the limit approach of constructing a soliton-antisoliton pair of equal amplitude with a particular chirp. The evolution figures of these soliton solutions are displayed and analyzed. The influence of the perturbation term and background oscillation strength upon the DPS is also discussed. 展开更多
关键词 nonlinear partial differential equation integrable system Hirota's bilinear derivative method soliton solution the derivative Schrodinger equation nonlinear optics
原文传递
新的(2+1)维Boussinesq方程的孤立子解
7
作者 郭学军 曹玉雷 《山东大学学报(理学版)》 北大核心 2025年第5期33-39,共7页
研究(2+1)维的Boussinesq方程,该系统是Boussinesq方程的一个多维推广版本。利用Hirota的双线性方法构造(2+1)维Boussinesq方程的孤立子解,并分析孤立子解的局部特征,给出了孤立子解的动力学行为。此外,在特殊参数限制下得到了共振的孤... 研究(2+1)维的Boussinesq方程,该系统是Boussinesq方程的一个多维推广版本。利用Hirota的双线性方法构造(2+1)维Boussinesq方程的孤立子解,并分析孤立子解的局部特征,给出了孤立子解的动力学行为。此外,在特殊参数限制下得到了共振的孤立子解。由于共振碰撞,孤立子解呈现“V”型,不再是传统的交叉型。更高阶的共振孤立子解的动力学行为更加复杂多样,由基本的共振孤立子叠加而成。 展开更多
关键词 (2+1)-维Boussinesq方程 双线性方法 孤立子解 动力学
原文传递
考虑原油采购选择的混炼加工优化
8
作者 董丰莲 李鹏 +3 位作者 魏志伟 孙鑫 徐赫锴 何畅 《化工进展》 北大核心 2025年第8期4648-4656,共9页
目前,原油采购和混炼加工方案多采用人工经验或数学规划方法进行决策,存在求解时间过长以及无法统筹考虑全局性等问题。针对炼化场景下的典型混炼工艺和原油采购要求,结合“P模型”的概念建立了混合整数非线性模型,并根据整数变量的特... 目前,原油采购和混炼加工方案多采用人工经验或数学规划方法进行决策,存在求解时间过长以及无法统筹考虑全局性等问题。针对炼化场景下的典型混炼工艺和原油采购要求,结合“P模型”的概念建立了混合整数非线性模型,并根据整数变量的特性设计了基于p范数和内点法的迭代求解算法。结果表明,在10种原油、54种物性、58套加工装置的优化背景下,与商用求解器优化结果相比,采用以上方法可以在短时间内找到一个经济效益更好的原油采购加工方案并且在多个算例下均展现出了更好的鲁棒性。 展开更多
关键词 优化 算法 石油 混炼 双线性 内点法 范数平滑
在线阅读 下载PDF
Periodic lump,soliton,and some mixed solutions of the(2+1)-dimensional generalized coupled nonlinear Schrödinger equations
9
作者 Xiao-Min Wang Ji Li Xiao-Xiao Hu 《Chinese Physics B》 2025年第11期340-350,共11页
The(2+1)-dimensional generalized coupled nonlinear Schrödinger equations with a four-wave mixing term are studied in this paper,which describe optical solitons in birefringent fibers.Utilizing the Hirota bilinear... The(2+1)-dimensional generalized coupled nonlinear Schrödinger equations with a four-wave mixing term are studied in this paper,which describe optical solitons in birefringent fibers.Utilizing the Hirota bilinear method,we systematically construct single-and double-periodic lump solutions.To provide a detailed insight into the dynamic behavior of the nonlinear waves,we explore diverse mixed solutions,including bright-dark,W-shaped,multi-peak,and bright soliton solutions.Building upon single-periodic lump solutions,we analyze the dynamics of lump waves on both plane-wave and periodic backgrounds using the long-wave limit method.Moreover,we obtain the interaction solutions involving lumps,periodic lumps,and solitons.The interactions among two solitons,multiple lumps,and mixed waves are illustrated and analyzed.Comparative analysis reveals that these multi-lump solutions exhibit richer dynamical properties than conventional single-lump ones.These results contribute to a deeper understanding of nonlinear systems and may facilitate solving nonlinear problems in nature. 展开更多
关键词 nonlinear Schrödinger equations lump solutions mixed solutions Hirota bilinear method
原文传递
Nondegenerate and Degenerate Multi-Solitons for the Reverse-Time Nonlocal Nonlinear Schrodinger Model
10
作者 Jin-Hao Liu Kai-Li Geng Chao-Qing Dai 《Chinese Physics Letters》 2025年第4期1-8,共8页
We employ the Hirota bilinear method to systematically derive nondegenerate bright one-and two-soliton solutions,along with degenerate bright-dark two-and four-soliton solutions for the reverse-time nonlocal nonlinear... We employ the Hirota bilinear method to systematically derive nondegenerate bright one-and two-soliton solutions,along with degenerate bright-dark two-and four-soliton solutions for the reverse-time nonlocal nonlinear Schr¨odinger equation.Beyond the fundamental nondegenerate one-soliton solution,we have identified and characterized nondegenerate breather bound state solitons,with particular emphasis on their evolution dynamics. 展开更多
关键词 dark solitons nondegenerate breather bound state solitonswith reverse time nonlocal nonlinear Schr dinger equation nondegenerate solitons bright solitons evolution dynamics degenerate solitons Hirota bilinear method
原文传递
(2+1)维Sawada-Kotera方程的Lax可积性与精确解研究
11
作者 薛世博 套格图桑 《内蒙古师范大学学报(自然科学版)》 2025年第3期313-320,330,共9页
基于Hirota双线性方法和试探函数法,研究(2+1)维Sawada-Kotera方程的双线性Bäcklund变换,Lax对和精确解问题。利用Hirota双线性方法,将(2+1)维Sawada-Kotera方程转换为双线性形式,并利用试探函数法构造精确解,分析解的性质;再通过... 基于Hirota双线性方法和试探函数法,研究(2+1)维Sawada-Kotera方程的双线性Bäcklund变换,Lax对和精确解问题。利用Hirota双线性方法,将(2+1)维Sawada-Kotera方程转换为双线性形式,并利用试探函数法构造精确解,分析解的性质;再通过构造(2+1)维Sawada-Kotera方程的双线性Bäcklund变换,获得该方程的Lax对,进而证明方程Lax可积。 展开更多
关键词 (2+1)维Sawada-Kotera方程 HIROTA双线性方法 Bäcklund变换 LAX对
在线阅读 下载PDF
(2+1)维Korteweg-de Vries-Sawada-Kotera-Ramani方程中lump波和其它非线波碰撞前后的轨迹方程
12
作者 黄文杰 夏亚荣 +1 位作者 王璇 孙晓晴 《应用数学》 北大核心 2025年第1期263-275,共13页
本文首先基于Hirota双线性方法研究了(2+1)维Korteweg-de Vries-Sawada-Kotera-Ramani(KdVSKR)方程的多孤子解,接着利用长波极限法推导出KdVSKR方程的lump波与线波、呼吸波以及lump波的相互作用解.其次,根据lump波沿直线运动的特点,将Kd... 本文首先基于Hirota双线性方法研究了(2+1)维Korteweg-de Vries-Sawada-Kotera-Ramani(KdVSKR)方程的多孤子解,接着利用长波极限法推导出KdVSKR方程的lump波与线波、呼吸波以及lump波的相互作用解.其次,根据lump波沿直线运动的特点,将KdVSKR方程的精确解沿着某些平行直线,在无穷远处进行逼近,进而推导出lump波与线波、呼吸波及lump波撞前后的轨迹方程,并给出了波峰高度以及波的相移.更进一步地,将上述情形推广到lump波与任意多个线波、任意阶呼吸波及任意阶lump波碰撞的情形.最后验证了lump波与其它非线性波的碰撞是弹性碰撞,并绘制了碰撞过程的相关图像. 展开更多
关键词 HIROTA双线性方法 长波极限法 轨迹方程 Lump波
在线阅读 下载PDF
基于自适应陷波滤波器的永磁伺服系统共振抑制
13
作者 戴昊 鲁文其 +2 位作者 鲁玉军 方狄永 董小艳 《电子科技》 2025年第9期58-70,共13页
针对传统陷波器进行永磁伺服系统共振抑制时需设置多个陷波器或手动设置陷波参数等问题,文中提出了一种基于自适应陷波滤波器的永磁伺服系统在线共振抑制方法。分析双惯量弹性负载系统,推导并给出电机惯量等关键参数与机械共振频率的关... 针对传统陷波器进行永磁伺服系统共振抑制时需设置多个陷波器或手动设置陷波参数等问题,文中提出了一种基于自适应陷波滤波器的永磁伺服系统在线共振抑制方法。分析双惯量弹性负载系统,推导并给出电机惯量等关键参数与机械共振频率的关系。设计了基于双线性变换法的可调陷波宽度及深度陷波滤波器,采用归一化估计算法辨识系统的共振频率,并将其自整定陷波滤波器的宽度和深度系数。结果表明,在采用所提方法进行共振抑制性能测试时,共振频率辨识精度为1.87%。在引入自适应共振抑制陷波器前后,电机转速稳态误差从6.0%减少到2.8%。当出现两个共振点时,陷波器参数在1.28 s内及时更新,第2个共振频率的辨识精度为2.10%。在引入自适应共振抑制陷波器前后,电机转速稳态误差从1.6%减少到0.7%,验证了所提算法的有效性和优越性。 展开更多
关键词 永磁同步电机 伺服控制系统 双惯量弹性负载系统 双线性变换法 频率辨识 陷波滤波器 归一化估计算法 陷波参数自整定
在线阅读 下载PDF
(2+1)维变系数Kadomtsev-Petviashvili方程的复合型新解
14
作者 英俊 套格图桑 《内蒙古师范大学学报(自然科学版)》 2025年第5期524-533,共10页
基于Bell多项式方法,首先将(2+1)维变系数Kadomtsev-Petviashvili方程转化为Hirota双线性形式;其次利用试探函数法和符号计算系统Mathematica,求出其几种复合型新解;最后通过选取适当的参数,画出精确解的三维图形和等高线图分析解的性... 基于Bell多项式方法,首先将(2+1)维变系数Kadomtsev-Petviashvili方程转化为Hirota双线性形式;其次利用试探函数法和符号计算系统Mathematica,求出其几种复合型新解;最后通过选取适当的参数,画出精确解的三维图形和等高线图分析解的性质和特点。 展开更多
关键词 Bell多项式方法 Hirota双线性形式 试探函数法 复合型新解
在线阅读 下载PDF
基于干耦合超声波法的原木缺陷检测及可视化系统研发应用
15
作者 欧阳静宇 付代鹏 +5 位作者 王军 朱昊 张荣卓 杨小军 王正 李迎超 《林产工业》 北大核心 2025年第4期79-86,共8页
为提升木材内部品质检测与评价系统的研发工作,提高木材的综合利用率,利用超声波干耦合剂法,研发了一套原木内部缺陷检测及可视化系统,并通过原木试件试验实现了对原木内部缺陷的检测及可视化分析。结果表明:该系统检测原木试件内部缺... 为提升木材内部品质检测与评价系统的研发工作,提高木材的综合利用率,利用超声波干耦合剂法,研发了一套原木内部缺陷检测及可视化系统,并通过原木试件试验实现了对原木内部缺陷的检测及可视化分析。结果表明:该系统检测原木试件内部缺陷的准确性、可靠性和实用性研究工作得到有效验证。此外,该系统通过插值算法可使检测图像的边缘更加圆滑,并利用边缘检测算法可精确检测与反映原木内部缺陷的位置等信息。研究结果对于满足市场对木材资源日益增长的需求,提高木材无损检测仪器的自动化水平具有重要的应用价值。 展开更多
关键词 超声波法 原木缺陷检测 可视化系统 干耦合 B扫描脉冲透射法 双线性图像插值算法 边缘检测算法
在线阅读 下载PDF
Soliton Solutions and Bilinear Bcklund Transformation for Generalized Nonlinear Schrdinger Equation with Radial Symmetry
16
作者 江彦 田播 +2 位作者 刘文军 孙鲲 屈启兴 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第10期635-640,共6页
Investigated in this paper is the generalized nonlinear Schrodinger equation with radial symmetry. With the help of symbolic computation, the one-, two-, and N-soliton solutions are obtained through the bilinear metho... Investigated in this paper is the generalized nonlinear Schrodinger equation with radial symmetry. With the help of symbolic computation, the one-, two-, and N-soliton solutions are obtained through the bilinear method. B^cklund transformation in the bilinear form is presented, through which a new solution is constructed. Graphically, we have found that the solitons are symmetric about x = O, while the soliton pulse width and amplitude will change along with the distance and time during the propagation. 展开更多
关键词 generalized nonlinear SchrSdinger equation radial symmetry bilinear method symbolic computation soliton solutions Bgcklund transformation
在线阅读 下载PDF
Rogue wave solutions of (3+1)-dimensional Kadomtsev-Petviashvili equation by a direct limit method
17
作者 Yujie Sun Jiaojiao Wu Biao Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第6期11-21,共11页
On the bases of N-soliton solutions of Hirota’s bilinear method,high-order rogue wave solutions can be derived by a direct limit method.In this paper,a(3+1)-dimensional Kadomtsev-Petviashvili equation is taken to ill... On the bases of N-soliton solutions of Hirota’s bilinear method,high-order rogue wave solutions can be derived by a direct limit method.In this paper,a(3+1)-dimensional Kadomtsev-Petviashvili equation is taken to illustrate the process of obtaining rogue waves,that is,based on the long-wave limit method,rogue wave solutions are generated by reconstructing the phase parameters of N-solitons.Besides the fundamental pattern of rogue waves,the triangle or pentagon patterns are also obtained.Moreover,the different patterns of these solutions are determined by newly introduced parameters.In the end,the general form of N-order rogue wave solutions are proposed. 展开更多
关键词 rogue wave SOLITON Hirota bilinear method KP equation
原文传递
Soliton molecules for combined mKdV-type bilinear equation
18
作者 Zhang-Xuan Zhao Lu-Wei Zhang +1 位作者 Wei Yang Xue-Ping Cheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第10期1-9,共9页
Starting from the multi-soliton solutions obtained by the Hirota bilinear method,the soli ton molecule structures for the combined mKdV-type bilinear equation(Dt+∑n=1NαnDx2n+1)f*·f=0 are investigated using the ... Starting from the multi-soliton solutions obtained by the Hirota bilinear method,the soli ton molecule structures for the combined mKdV-type bilinear equation(Dt+∑n=1NαnDx2n+1)f*·f=0 are investigated using the velocity resonance mechanism.The two-soliton molecules of the mKdV-35 equation and the three-soliton molecules of the mKdV-357 equation are specifically demonstrated in this paper.With particular selections of the involved arbitrary parameters,especially the wave numbers,it is confirmed that,besides the usual multi-bright soliton molecules,the multi-dark soliton molecules and the mixed multibright-dark soliton molecules can also be obtained.In addition,we discuss the existence of the multi-soliton molecules for the combined mKdV-type bilinear equation with more higher order nonlinear terms and dispersions.The results demonstrate that when N≥4,the combined mKdVtype bilinear equation no longer admits soliton molecules comprising more than four solitons. 展开更多
关键词 soliton molecule combined mKdV-type bilinear equation Hirota bilinear method velocity resonance mechanism
原文传递
Localized waves for a complex nonisospectral nonpotential sine-Gordon equation
19
作者 Song-lin Zhao Xiao-hui Feng 《Communications in Theoretical Physics》 2025年第9期16-23,共8页
The nonisospectral effectλ_t=α(t)λsatisfied by spectral parameterλopens up a new scheme for constructing localized waves to some nonlinear partial differential equations.In this paper,we perform this effect on a c... The nonisospectral effectλ_t=α(t)λsatisfied by spectral parameterλopens up a new scheme for constructing localized waves to some nonlinear partial differential equations.In this paper,we perform this effect on a complex nonisospectral nonpotential sine-Gordon equation by the bilinearization reduction method.From an integrable nonisospectral Ablowitz–Kaup–Newell–Segur equation,we construct some exact solutions in double Wronskian form to the reduced complex nonisospectral nonpotential sine-Gordon equation.These solutions,including soliton solutions,Jordan-block solutions and interaction solutions,exhibit localized structure,whose dynamics are analyzed with graphical illustration.The research ideas and methods in this paper can be generalized to other negative order nonisospectral integrable systems. 展开更多
关键词 complex nonisospectral nonpotential sine-Gordon equation bilinear reduction method double Wronskian solutions localized waves
原文传递
(2+1)维广义Burgers方程的双孤立子解以及Lump-扭结波解
20
作者 杨立娟 《绵阳师范学院学报》 2025年第5期1-5,共5页
孤立子理论是非线性科学研究的一个重要内容,而Hirota双线性方法是求解非线性方程孤立子解的一种直接而有效的方法.利用推广的Hirota双线性方法研究了(2+1)维广义Burgers方程,通过选取不同的测试函数,求得(2+1)维广义Burgers方程的一些... 孤立子理论是非线性科学研究的一个重要内容,而Hirota双线性方法是求解非线性方程孤立子解的一种直接而有效的方法.利用推广的Hirota双线性方法研究了(2+1)维广义Burgers方程,通过选取不同的测试函数,求得(2+1)维广义Burgers方程的一些新的特殊孤立子解、lump型解以及Lump-扭结波解,并利用mathematic软件作图分析解的性质,这些解对于理解和丰富(2+1)维广义Burgers方程的动力学行为有一定的意义. 展开更多
关键词 (2+1)维广义Burgers方程 推广的Hirota双线性方法 周期孤立子解 Lump-扭结波解
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部