Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and eco...Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm,where the wake effect,wind speed,types of wind turbines,etc.,have an impact on the output power of the wind farm.To solve the optimization problem of wind farm layout under complex terrain conditions,this paper proposes wind turbine layout optimization using different types of wind turbines,the aim is to reduce the influence of the wake effect and maximize economic benefits.The linear wake model is used for wake flow calculation over complex terrain.Minimizing the unit energy cost is taken as the objective function,considering that the objective function is affected by cost and output power,which influence each other.The cost function includes construction cost,installation cost,maintenance cost,etc.Therefore,a bi-level constrained optimization model is established,in which the upper-level objective function is to minimize the unit energy cost,and the lower-level objective function is to maximize the output power.Then,a hybrid evolutionary algorithm is designed according to the characteristics of the decision variables.The improved genetic algorithm and differential evolution are used to optimize the upper-level and lower-level objective functions,respectively,these evolutionary operations search for the optimal solution as much as possible.Finally,taking the roughness of different terrain,wind farms of different scales and different types of wind turbines as research scenarios,the optimal deployment is solved by using the algorithm in this paper,and four algorithms are compared to verify the effectiveness of the proposed algorithm.展开更多
Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon ...Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems.展开更多
In order to carry out comprehensive decision-making of multi-class shared parking measures within a region, a bilevel model assisting decision-making is proposed. The upper level selects parkers' average satisfaction...In order to carry out comprehensive decision-making of multi-class shared parking measures within a region, a bilevel model assisting decision-making is proposed. The upper level selects parkers' average satisfaction and the violation rate during peak hours as indices in object function, and sets probability distribution models describing dynamic parking demand of each site, the feasibility of shared parking scenarios and occupancy requirements during peak hours of each parking lot as restrictions. The simulation model in the lower level sets up rules to assign each parker in the random parking demand series to the proper parking lot. An iterative method is proposed to confirm the state of each parking lot at the start of formal simulations. Besides, two patterns linking initialization and formal simulation are presented to acquire multiple solutions. The results of the numerical examples indicate the effectiveness of the model and solution methods.展开更多
An airway pressure and flow data acquisition system is developed to investigate the approach to building the bi-level positive airway pressure BiPAP in a ventilator.A number of experiments under different breathing si...An airway pressure and flow data acquisition system is developed to investigate the approach to building the bi-level positive airway pressure BiPAP in a ventilator.A number of experiments under different breathing situations and states are conducted and the experimental data are recorded.According to the data from these experiments the variation characteristics of the pressure and flow are analyzed using Matlab. The data analysis results show that the pressure increases while the flow decreases in the expiratory phase contrarily the pressure decreases while the flow increases in the inspiratory phase during the apnea state both the pressure and the flow remain unchanged. According to the above variation characteristics of breath a feedback-based method for creating bi-level positive airway pressure is proposed. Experiments are implemented to verify the BiPAP model. Results demonstrate that the proposed method works effectively in following respiration and caters well to most polypnea and apnea events.展开更多
Due to the fact that headway is a key factor to be considered in bus scheduling, this paper proposes a bi-level programming model for optimizing bus headway in public transit lines. In this model, with the interests o...Due to the fact that headway is a key factor to be considered in bus scheduling, this paper proposes a bi-level programming model for optimizing bus headway in public transit lines. In this model, with the interests of bus companies and passengers in mind, the upper-level model's objective is to minimize the total cost, which is affected by frequency settings, both in time and economy in the transit system. The lower-level model is a transit assignment model used to describe the assignment of passengers' trips to the network based on the optimal bus headway. In order to solve the proposed model, a hybrid genetic algorithm, namely the genetic algorithm and the simulated annealing algorithm (GA-SA), is designed. Finally, the model and the algorithm are tested against the transit data, by taking some of the bus lines of Changzhou city as an example. Results indicate that the proposed model allows supply and demand to be linked, which is reasonable, and the solving algorithm is effective.展开更多
In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways Hi...In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.展开更多
The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene.However,existing methods struggle to effectively han...The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene.However,existing methods struggle to effectively handle modal disparities,resulting in visual degradation of the details and prominent targets of the fused images.To address these challenges,we introduce Prompt Fusion,a prompt-based approach that harmoniously combines multi-modality images under the guidance of semantic prompts.Firstly,to better characterize the features of different modalities,a contourlet autoencoder is designed to separate and extract the high-/low-frequency components of different modalities,thereby improving the extraction of fine details and textures.We also introduce a prompt learning mechanism using positive and negative prompts,leveraging Vision-Language Models to improve the fusion model's understanding and identification of targets in multi-modality images,leading to improved performance in downstream tasks.Furthermore,we employ bi-level asymptotic convergence optimization.This approach simplifies the intricate non-singleton non-convex bi-level problem into a series of convergent and differentiable single optimization problems that can be effectively resolved through gradient descent.Our approach advances the state-of-the-art,delivering superior fusion quality and boosting the performance of related downstream tasks.Project page:https://github.com/hey-it-s-me/PromptFusion.展开更多
With the severe challenges brought by global climate change,exploring and developing clean and renewable energy systems to upgrade the energy structure has become an inevitable trend in related research.The comprehens...With the severe challenges brought by global climate change,exploring and developing clean and renewable energy systems to upgrade the energy structure has become an inevitable trend in related research.The comprehensive park systems integrated with photovoltaic,energy storage,direct current,and flexible loads(PEDF)is able to play an important role in promoting energy transformation and achieving sustainable development.In order to fully understand the advantages of PEDF parks in energy conservation and carbon reduction,this paper summarizes existing studies and prospects future research directions on the low-carbon operation of the PEDF park.This paper first introduces carbon emission monitoring and evaluation methods,and then analyzes bi-level optimal dispatch strategies for flexible loads.Meanwhile,the paper provides a prospective analysis of the innovations that can be brought by advanced technologies to the PEDF park.Finally,this paper puts forward the challenges faced by current research and provides prospects for future research directions.This paper emphasizes that related research should focus on collaborating key technologies of PEDF systems and integrating advanced innovations to address challenges and fully leverage the advantages of PEDF technology in energy saving and carbon reduction.This paper aims to provide systematic theoretical guidance and supplements for the research and practice of the PEDF technology.展开更多
Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level progra...Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.展开更多
This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory cap...This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory capability, maneuverability, and flight velocity limit. On the basis of a novel adaptability-involved problem statement, bi-level programming (BLP) and variable planning step techniques are introduced to model the necessary path planning components and then an adaptive path planner is developed for the purpose of adaptation and optimization. Additionally, both probabilistic-risk-based obstacle avoidance and performance limits are described as path search constraints to guarantee path safety and navigability. A discrete-search-based path planning solution, embedded with four optimization strategies, is especially designed for the planner to efficiently generate optimal flight paths in complex operational spaces, within which different surface-to-air missiles (SAMs) are deployed. Simulation results in challenging and stochastic scenarios firstly demonstrate the effectiveness and efficiency of the proposed planner, and then verify its great adaptability and relative stability when planning optimal paths for a UAV with changing or fluctuating performances.展开更多
This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes ar...This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.展开更多
The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience depend...The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience dependence and improve the design, a new Multidisciplinary Design Optimization (MDO) method "Bi-Level Integrated System Collaborative Optimization (BLISCO)" is applied to the conceptual design of an HOV, which consists of hull module, resistance module, energy module, structure module, weight module, and the stability module. This design problem is defined by 21 design variables and 23 constraints, and its objective is to maximize the ratio of payload to weight. The results show that the general performance of the HOV can be greatly improved by BLISCO.展开更多
Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algor...Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algorithm is compared with Monte Carlo simulated annealing algorithm, and its feasibility and effectiveness are verified with two calculating examples.展开更多
Since COVID-19 was declared as a pandemic in March 2020,the world’s major preoccupation has been to curb it while preserving the economy and reducing unemployment.This paper uses a novel Bi-Level Dynamic Optimal Cont...Since COVID-19 was declared as a pandemic in March 2020,the world’s major preoccupation has been to curb it while preserving the economy and reducing unemployment.This paper uses a novel Bi-Level Dynamic Optimal Control model(BLDOC)to coordinate control between COVID-19 and unemployment.The COVID-19 model is the upper level while the unemployment model is the lower level of the bi-level dynamic optimal control model.The BLDOC model’s main objectives are to minimize the number of individuals infected with COVID-19 and to minimize the unemployed individuals,and at the same time minimizing the cost of the containment strategies.We use the modified approximation Karush–Kuhn–Tucker(KKT)conditions with the Hamiltonian function to handle the bi-level dynamic optimal control model.We consider three control variables:The first control variable relates to government measures to curb the COVID-19 pandemic,i.e.,quarantine,social distancing,and personal protection;and the other two control variables relate to government interventions to reduce the unemployment rate,i.e.,employment,making individuals qualified,creating new jobs reviving the economy,reducing taxes.We investigate four different cases to verify the effect of control variables.Our results indicate that rather than focusing exclusively on only one problem,we need a balanced trade-off between controlling each.展开更多
In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programmi...In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programming. For the application of the method, the two-level problem is reformulated using the Karush-Kuhn-Tucker conditions. The resulting model is linearized taking advantage of the structure of the leading problem. Using a Lagrange relaxation algorithm, it is possible to find a global solution efficiently. The algorithm was tested to show how it performs.展开更多
As the proportion of renewable energy power generation continues to increase,the number of grid-connected microgrids is gradually increasing,and geographically adjacent microgrids can be interconnected to form a Micro...As the proportion of renewable energy power generation continues to increase,the number of grid-connected microgrids is gradually increasing,and geographically adjacent microgrids can be interconnected to form a Micro-Grid Community(MGC).In order to reduce the operation and maintenance costs of a single micro grid and reduce the adverse effects caused by unnecessary energy interaction between the micro grid and the main grid while improving the overall economic benefits of the micro grid community,this paper proposes a bi-level energy management model with the optimization goal of maximizing the social welfare of the micro grid community and minimizing the total electricity cost of a single micro grid.The lower-level model optimizes the output of each equipment unit in the system and the exchange power between the system and the external grid with the goal of minimizing the operating cost of each microgrid.The upper-level model optimizes the goal ofmaximizing the socialwelfare of themicrogrid.Taking amicrogrid community with four microgrids as an example,the simulation analysis shows that the proposed optimization model is beneficial to reduce the operating cost of a single microgrid,improve the overall revenue of the microgrid community,and reduce the power interaction pressure on the main grid.展开更多
An algorithm is proposed in this paper for solving two-dimensional bi-level linear programming problems without making a graph. Based on the classification of constraints, algorithm removes all redundant constraints, ...An algorithm is proposed in this paper for solving two-dimensional bi-level linear programming problems without making a graph. Based on the classification of constraints, algorithm removes all redundant constraints, which eliminate the possibility of cycling and the solution of the problem is reached in a finite number of steps. Example to illustrate the method is also included in the paper.展开更多
The urban transit fare structure and level can largely affect passengers’travel behavior and route choices.The commonly used transit fare policies in the present transit network would lead to the unbalanced transit a...The urban transit fare structure and level can largely affect passengers’travel behavior and route choices.The commonly used transit fare policies in the present transit network would lead to the unbalanced transit assignment and improper transit resources distribution.In order to distribute transit passenger flow evenly and efficiently,this paper introduces a new distance-based fare pattern with Euclidean distance.A bi-level programming model is developed for determining the optimal distance-based fare pattern,with the path-based stochastic transit assignment(STA)problem with elastic demand being proposed at the lower level.The upper-level intends to address a principal-agent game between transport authorities and transit enterprises pursing maximization of social welfare and financial interest,respectively.A genetic algorithm(GA)is implemented to solve the bi-level model,which is verified by a numerical example to illustrate that the proposed nonlinear distance-based fare pattern presents a better financial performance and distribution effect than other fare structures.展开更多
Objective:To analyze the clinical efficacy of early application of bi-level positive airway pressure ventilation in the treatment of COPD with type II respiratory failure.Method:A total of 58 patients with COPD and ty...Objective:To analyze the clinical efficacy of early application of bi-level positive airway pressure ventilation in the treatment of COPD with type II respiratory failure.Method:A total of 58 patients with COPD and type II respiratory failure admitted to our hospital from January 2017 to January 2019 were randomly divided into observation group and control group,with 29 cases in each group.Among them,the control group was received routine treatment while the observation group was treated with bi-level positive pressure airway ventilation in addition of conventional treatment.The arterial blood gas analysis,mortality rate and hospitalization time of these two groups before and after treatment were compared.Result:The blood pH,partial pressure of oxygen(PaO2)and arterial oxygen saturation(SaO2)of these two groups were significantly higher after the treatment while PaO2 alone was decreased.The difference was statistically significant(P<0.05).The results of arterial blood gas analysis in the observation group were significantly improved compared with those before treatment.The mortality rate and hospitalization time were significantly less than the control group,and the difference was statistically significant(P<0.05).Conclusion:Early clinical application of bi-level positive airway pressure ventilation in the treatment of COPD with type II respiratory failure has a significant clinical effect in reducing the mortality rate and hospitalization time of patients,and thus it is worthy of clinical application.展开更多
In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approach...In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approaches that can be exploited in order to enhance yield of processes which are based on biological reactions. Here, we propose an evolutionary approach aiming to suggest different mutant for augmenting ethanol yield using glycerol as substrate in Escherichia coli. We found that this algorithm, even though is far from providing the global optimum, is able to uncover genes that a global optimizer would be incapable of. By over-expressing accB, eno, dapE, and accA mutants in ethanol production was augmented up to 2 fold compared to its counterpart E. coli BW25113.展开更多
基金supported by the National Natural Science Foundation of China[Grant No.12461035]Qinghai University Students Innovative Training Program Project[2024-QX-57].
文摘Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm,where the wake effect,wind speed,types of wind turbines,etc.,have an impact on the output power of the wind farm.To solve the optimization problem of wind farm layout under complex terrain conditions,this paper proposes wind turbine layout optimization using different types of wind turbines,the aim is to reduce the influence of the wake effect and maximize economic benefits.The linear wake model is used for wake flow calculation over complex terrain.Minimizing the unit energy cost is taken as the objective function,considering that the objective function is affected by cost and output power,which influence each other.The cost function includes construction cost,installation cost,maintenance cost,etc.Therefore,a bi-level constrained optimization model is established,in which the upper-level objective function is to minimize the unit energy cost,and the lower-level objective function is to maximize the output power.Then,a hybrid evolutionary algorithm is designed according to the characteristics of the decision variables.The improved genetic algorithm and differential evolution are used to optimize the upper-level and lower-level objective functions,respectively,these evolutionary operations search for the optimal solution as much as possible.Finally,taking the roughness of different terrain,wind farms of different scales and different types of wind turbines as research scenarios,the optimal deployment is solved by using the algorithm in this paper,and four algorithms are compared to verify the effectiveness of the proposed algorithm.
基金supported by the Science and Technology Project of Yunnan Power Grid Co.,Ltd.under Grant No.YNKJXM20222410.
文摘Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems.
基金The Planning Program of Science and Technology of Ministry of Housing and Urban-Rural Development of China (No. 2010-K5-16)
文摘In order to carry out comprehensive decision-making of multi-class shared parking measures within a region, a bilevel model assisting decision-making is proposed. The upper level selects parkers' average satisfaction and the violation rate during peak hours as indices in object function, and sets probability distribution models describing dynamic parking demand of each site, the feasibility of shared parking scenarios and occupancy requirements during peak hours of each parking lot as restrictions. The simulation model in the lower level sets up rules to assign each parker in the random parking demand series to the proper parking lot. An iterative method is proposed to confirm the state of each parking lot at the start of formal simulations. Besides, two patterns linking initialization and formal simulation are presented to acquire multiple solutions. The results of the numerical examples indicate the effectiveness of the model and solution methods.
基金The National Natural Science Foundation of China(No.51275090)the Science and Technology Support Program of Jiangsu Province(No.BE2011608)the Program for Special Talent in Six Fields of Jiangsu Province(No.2008144)
文摘An airway pressure and flow data acquisition system is developed to investigate the approach to building the bi-level positive airway pressure BiPAP in a ventilator.A number of experiments under different breathing situations and states are conducted and the experimental data are recorded.According to the data from these experiments the variation characteristics of the pressure and flow are analyzed using Matlab. The data analysis results show that the pressure increases while the flow decreases in the expiratory phase contrarily the pressure decreases while the flow increases in the inspiratory phase during the apnea state both the pressure and the flow remain unchanged. According to the above variation characteristics of breath a feedback-based method for creating bi-level positive airway pressure is proposed. Experiments are implemented to verify the BiPAP model. Results demonstrate that the proposed method works effectively in following respiration and caters well to most polypnea and apnea events.
基金The National Natural Science Foundation of China(No.50978057)the National Key Technology R& D Program of China duringthe 11th Five-Year Plan Period (No.2006BAJ18B03)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University ( No.YBJJ1013)the Program for Postgraduates Research Innovation in University of Jiangsu Province(No.CX09B 060Z)
文摘Due to the fact that headway is a key factor to be considered in bus scheduling, this paper proposes a bi-level programming model for optimizing bus headway in public transit lines. In this model, with the interests of bus companies and passengers in mind, the upper-level model's objective is to minimize the total cost, which is affected by frequency settings, both in time and economy in the transit system. The lower-level model is a transit assignment model used to describe the assignment of passengers' trips to the network based on the optimal bus headway. In order to solve the proposed model, a hybrid genetic algorithm, namely the genetic algorithm and the simulated annealing algorithm (GA-SA), is designed. Finally, the model and the algorithm are tested against the transit data, by taking some of the bus lines of Changzhou city as an example. Results indicate that the proposed model allows supply and demand to be linked, which is reasonable, and the solving algorithm is effective.
基金funded by the National Natural Science Foundation of China(52167013)the Key Program of Natural Science Foundation of Gansu Province(24JRRA225)Natural Science Foundation of Gansu Province(23JRRA891).
文摘In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.
基金partially supported by China Postdoctoral Science Foundation(2023M730741)the National Natural Science Foundation of China(U22B2052,52102432,52202452,62372080,62302078)
文摘The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene.However,existing methods struggle to effectively handle modal disparities,resulting in visual degradation of the details and prominent targets of the fused images.To address these challenges,we introduce Prompt Fusion,a prompt-based approach that harmoniously combines multi-modality images under the guidance of semantic prompts.Firstly,to better characterize the features of different modalities,a contourlet autoencoder is designed to separate and extract the high-/low-frequency components of different modalities,thereby improving the extraction of fine details and textures.We also introduce a prompt learning mechanism using positive and negative prompts,leveraging Vision-Language Models to improve the fusion model's understanding and identification of targets in multi-modality images,leading to improved performance in downstream tasks.Furthermore,we employ bi-level asymptotic convergence optimization.This approach simplifies the intricate non-singleton non-convex bi-level problem into a series of convergent and differentiable single optimization problems that can be effectively resolved through gradient descent.Our approach advances the state-of-the-art,delivering superior fusion quality and boosting the performance of related downstream tasks.Project page:https://github.com/hey-it-s-me/PromptFusion.
基金This work was supported by National Key R&D Program of China for International S&T Cooperation Projects(Grant No.2019YFE0118700)which was provided by the Ministry of Science and Technology of the People’s Republic of China(https://www.most.gov.cn/(accessed on 1 January 2025))+2 种基金the grant was received by Yun Zhao.This work was supported by Science and Technology Project of CSG Electric Power Research Institute(Grant No.SEPRIK23B052)which was provided by CSG Electric Power Research Institute(http://www.sepri.csg.cn/(accessed on 1 January 2025))the grant was received by Ziwen Cai.
文摘With the severe challenges brought by global climate change,exploring and developing clean and renewable energy systems to upgrade the energy structure has become an inevitable trend in related research.The comprehensive park systems integrated with photovoltaic,energy storage,direct current,and flexible loads(PEDF)is able to play an important role in promoting energy transformation and achieving sustainable development.In order to fully understand the advantages of PEDF parks in energy conservation and carbon reduction,this paper summarizes existing studies and prospects future research directions on the low-carbon operation of the PEDF park.This paper first introduces carbon emission monitoring and evaluation methods,and then analyzes bi-level optimal dispatch strategies for flexible loads.Meanwhile,the paper provides a prospective analysis of the innovations that can be brought by advanced technologies to the PEDF park.Finally,this paper puts forward the challenges faced by current research and provides prospects for future research directions.This paper emphasizes that related research should focus on collaborating key technologies of PEDF systems and integrating advanced innovations to address challenges and fully leverage the advantages of PEDF technology in energy saving and carbon reduction.This paper aims to provide systematic theoretical guidance and supplements for the research and practice of the PEDF technology.
基金Project(2006CB705507) supported by the National Basic Research and Development Program of ChinaProject(20060533036) supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.
基金the National Natural Science Foundation of China(No.60904066)
文摘This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory capability, maneuverability, and flight velocity limit. On the basis of a novel adaptability-involved problem statement, bi-level programming (BLP) and variable planning step techniques are introduced to model the necessary path planning components and then an adaptive path planner is developed for the purpose of adaptation and optimization. Additionally, both probabilistic-risk-based obstacle avoidance and performance limits are described as path search constraints to guarantee path safety and navigability. A discrete-search-based path planning solution, embedded with four optimization strategies, is especially designed for the planner to efficiently generate optimal flight paths in complex operational spaces, within which different surface-to-air missiles (SAMs) are deployed. Simulation results in challenging and stochastic scenarios firstly demonstrate the effectiveness and efficiency of the proposed planner, and then verify its great adaptability and relative stability when planning optimal paths for a UAV with changing or fluctuating performances.
基金Project(16B134)supported by Hunan Provincial Department of Education,China
文摘This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.
基金financially supported by the National Natural Science Foundation of China(Grant No.51109132)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110073120015)
文摘The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience dependence and improve the design, a new Multidisciplinary Design Optimization (MDO) method "Bi-Level Integrated System Collaborative Optimization (BLISCO)" is applied to the conceptual design of an HOV, which consists of hull module, resistance module, energy module, structure module, weight module, and the stability module. This design problem is defined by 21 design variables and 23 constraints, and its objective is to maximize the ratio of payload to weight. The results show that the general performance of the HOV can be greatly improved by BLISCO.
文摘Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algorithm is compared with Monte Carlo simulated annealing algorithm, and its feasibility and effectiveness are verified with two calculating examples.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research Group No.RG-1441-309.
文摘Since COVID-19 was declared as a pandemic in March 2020,the world’s major preoccupation has been to curb it while preserving the economy and reducing unemployment.This paper uses a novel Bi-Level Dynamic Optimal Control model(BLDOC)to coordinate control between COVID-19 and unemployment.The COVID-19 model is the upper level while the unemployment model is the lower level of the bi-level dynamic optimal control model.The BLDOC model’s main objectives are to minimize the number of individuals infected with COVID-19 and to minimize the unemployed individuals,and at the same time minimizing the cost of the containment strategies.We use the modified approximation Karush–Kuhn–Tucker(KKT)conditions with the Hamiltonian function to handle the bi-level dynamic optimal control model.We consider three control variables:The first control variable relates to government measures to curb the COVID-19 pandemic,i.e.,quarantine,social distancing,and personal protection;and the other two control variables relate to government interventions to reduce the unemployment rate,i.e.,employment,making individuals qualified,creating new jobs reviving the economy,reducing taxes.We investigate four different cases to verify the effect of control variables.Our results indicate that rather than focusing exclusively on only one problem,we need a balanced trade-off between controlling each.
文摘In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programming. For the application of the method, the two-level problem is reformulated using the Karush-Kuhn-Tucker conditions. The resulting model is linearized taking advantage of the structure of the leading problem. Using a Lagrange relaxation algorithm, it is possible to find a global solution efficiently. The algorithm was tested to show how it performs.
基金This paper is supported by Science and Technology Project of State Grid(The construction of provincial energy big data ecosystem and the application practice research of data value-added service for the park,5400-202012224A-0-0-00).
文摘As the proportion of renewable energy power generation continues to increase,the number of grid-connected microgrids is gradually increasing,and geographically adjacent microgrids can be interconnected to form a Micro-Grid Community(MGC).In order to reduce the operation and maintenance costs of a single micro grid and reduce the adverse effects caused by unnecessary energy interaction between the micro grid and the main grid while improving the overall economic benefits of the micro grid community,this paper proposes a bi-level energy management model with the optimization goal of maximizing the social welfare of the micro grid community and minimizing the total electricity cost of a single micro grid.The lower-level model optimizes the output of each equipment unit in the system and the exchange power between the system and the external grid with the goal of minimizing the operating cost of each microgrid.The upper-level model optimizes the goal ofmaximizing the socialwelfare of themicrogrid.Taking amicrogrid community with four microgrids as an example,the simulation analysis shows that the proposed optimization model is beneficial to reduce the operating cost of a single microgrid,improve the overall revenue of the microgrid community,and reduce the power interaction pressure on the main grid.
文摘An algorithm is proposed in this paper for solving two-dimensional bi-level linear programming problems without making a graph. Based on the classification of constraints, algorithm removes all redundant constraints, which eliminate the possibility of cycling and the solution of the problem is reached in a finite number of steps. Example to illustrate the method is also included in the paper.
基金the Humanities and Social Science Foundation of the Ministry of Education of China(Grant No.20YJCZH121).
文摘The urban transit fare structure and level can largely affect passengers’travel behavior and route choices.The commonly used transit fare policies in the present transit network would lead to the unbalanced transit assignment and improper transit resources distribution.In order to distribute transit passenger flow evenly and efficiently,this paper introduces a new distance-based fare pattern with Euclidean distance.A bi-level programming model is developed for determining the optimal distance-based fare pattern,with the path-based stochastic transit assignment(STA)problem with elastic demand being proposed at the lower level.The upper-level intends to address a principal-agent game between transport authorities and transit enterprises pursing maximization of social welfare and financial interest,respectively.A genetic algorithm(GA)is implemented to solve the bi-level model,which is verified by a numerical example to illustrate that the proposed nonlinear distance-based fare pattern presents a better financial performance and distribution effect than other fare structures.
文摘Objective:To analyze the clinical efficacy of early application of bi-level positive airway pressure ventilation in the treatment of COPD with type II respiratory failure.Method:A total of 58 patients with COPD and type II respiratory failure admitted to our hospital from January 2017 to January 2019 were randomly divided into observation group and control group,with 29 cases in each group.Among them,the control group was received routine treatment while the observation group was treated with bi-level positive pressure airway ventilation in addition of conventional treatment.The arterial blood gas analysis,mortality rate and hospitalization time of these two groups before and after treatment were compared.Result:The blood pH,partial pressure of oxygen(PaO2)and arterial oxygen saturation(SaO2)of these two groups were significantly higher after the treatment while PaO2 alone was decreased.The difference was statistically significant(P<0.05).The results of arterial blood gas analysis in the observation group were significantly improved compared with those before treatment.The mortality rate and hospitalization time were significantly less than the control group,and the difference was statistically significant(P<0.05).Conclusion:Early clinical application of bi-level positive airway pressure ventilation in the treatment of COPD with type II respiratory failure has a significant clinical effect in reducing the mortality rate and hospitalization time of patients,and thus it is worthy of clinical application.
基金the support of the National BioResource Project(NIG,Japan):E.coli Strain for kindly providing us with the Keio Collection using for our experimental sectionAlso this work is funded by Vicerrectoria de investigaciones at Universidad de los Andes.
文摘In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approaches that can be exploited in order to enhance yield of processes which are based on biological reactions. Here, we propose an evolutionary approach aiming to suggest different mutant for augmenting ethanol yield using glycerol as substrate in Escherichia coli. We found that this algorithm, even though is far from providing the global optimum, is able to uncover genes that a global optimizer would be incapable of. By over-expressing accB, eno, dapE, and accA mutants in ethanol production was augmented up to 2 fold compared to its counterpart E. coli BW25113.