期刊文献+
共找到369,462篇文章
< 1 2 250 >
每页显示 20 50 100
Bi-level optimization of regional virtual power plants based on balancing group mechanism
1
作者 hangwei Wu Heping Jia +2 位作者 Lianjun Shi Dunnan Liu Zhenglin Yang 《Global Energy Interconnection》 2025年第6期931-946,共16页
Given the power system balancing challenges induced by high-penetration renewable energy integration,this study systematically reviews international balancing mechanism practices and conducts an in-depth deconstructio... Given the power system balancing challenges induced by high-penetration renewable energy integration,this study systematically reviews international balancing mechanism practices and conducts an in-depth deconstruction of Germany’s balancing group mechanism(BGM).Building on this foundation,this research pioneers the integration of virtual power plants(VPPs)with the BGM in the Chinese context to overcome the limitations of traditional single-entity regulation models in flexibility provision and economic efficiency.A balancing responsibility framework centered on VPPs is innovatively proposed and a regional multi-entity collaboration and bi-level responsibility transfer architecture is constructed.This architecture enables cross-layer coordinated optimization of regional system costs and VPP revenues.The upper layer minimizes regional operational costs,whereas the lower layer enhances the operational revenues of VPPs through dynamic gaming between deviation regulation service income and penalty costs.Compared with traditional centralized regulation models,the proposed method reduces system operational costs by 29.1%in typical regional cases and increases VPP revenues by 24.9%.These results validate its dual optimization of system economics and participant incentives through market mechanisms,providing a replicable theoretical paradigm and practical pathway for designing balancing mechanisms in new power systems. 展开更多
关键词 Balancing mechanism Balancing responsible party bi-level optimization Operation mode Virtual power plant
在线阅读 下载PDF
A Bi-Level Optimization Model and Hybrid Evolutionary Algorithm for Wind Farm Layout with Different Turbine Types
2
作者 Erping Song Zipin Yao 《Energy Engineering》 2025年第12期5129-5147,共19页
Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and eco... Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm,where the wake effect,wind speed,types of wind turbines,etc.,have an impact on the output power of the wind farm.To solve the optimization problem of wind farm layout under complex terrain conditions,this paper proposes wind turbine layout optimization using different types of wind turbines,the aim is to reduce the influence of the wake effect and maximize economic benefits.The linear wake model is used for wake flow calculation over complex terrain.Minimizing the unit energy cost is taken as the objective function,considering that the objective function is affected by cost and output power,which influence each other.The cost function includes construction cost,installation cost,maintenance cost,etc.Therefore,a bi-level constrained optimization model is established,in which the upper-level objective function is to minimize the unit energy cost,and the lower-level objective function is to maximize the output power.Then,a hybrid evolutionary algorithm is designed according to the characteristics of the decision variables.The improved genetic algorithm and differential evolution are used to optimize the upper-level and lower-level objective functions,respectively,these evolutionary operations search for the optimal solution as much as possible.Finally,taking the roughness of different terrain,wind farms of different scales and different types of wind turbines as research scenarios,the optimal deployment is solved by using the algorithm in this paper,and four algorithms are compared to verify the effectiveness of the proposed algorithm. 展开更多
关键词 bi-level optimization genetic algorithm differential evolution hybrid evolutionary algorithm wind farm layout
在线阅读 下载PDF
Convergence Rate Analysis of Modified BiG-SAM for Solving Bi-Level Optimization Problems Based on S-FISTA
3
作者 Nishi Xiaoyin Lin Yang 《Journal of Applied Mathematics and Physics》 2025年第4期1555-1576,共22页
In this paper,we consider a more general bi-level optimization problem,where the inner objective function is consisted of three convex functions,involving a smooth and two non-smooth functions.The outer objective func... In this paper,we consider a more general bi-level optimization problem,where the inner objective function is consisted of three convex functions,involving a smooth and two non-smooth functions.The outer objective function is a classical strongly convex function which may not be smooth.Motivated by the smoothing approaches,we modify the classical bi-level gradient sequential averaging method to solve the bi-level optimization problem.Under some mild conditions,we obtain the convergence rate of the generated sequence,and then based on the analysis framework of S-FISTA,we show the global convergence rate of the proposed algorithm. 展开更多
关键词 bi-level optimization Convex Problems First-Order Methods Proximal Gradient Method Sequential Averaging Method Moreau Envelope
在线阅读 下载PDF
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
4
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
5
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Bi-Level Collaborative Optimization of Electricity-Carbon Integrated Demand Response for Energy-Intensive Industries under Source-Load Interaction
6
作者 Huaihu Wang Wen Chen +5 位作者 Jin Yang Rui Su Jiale Li Liao Yuan Zhaobin Du Yujie Meng 《Energy Engineering》 2025年第9期3867-3890,共24页
Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon ... Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems. 展开更多
关键词 Carbon-aware demand response bi-level collaborative optimization dynamic carbon emission factor industrial flexible loads
在线阅读 下载PDF
Emittance optimization of gridded thermionic‑cathode electron gun for high‑quality beam injectors
7
作者 Xiao‑Yu Peng Hao Hu +3 位作者 Tong‑Ning Hu Jian Pang Jian‑Jun Deng Guang‑Yao Feng 《Nuclear Science and Techniques》 2026年第1期119-129,共11页
Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced... Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector. 展开更多
关键词 Electron gun Gridded Beam injector Beam dynamics Emittance optimization
在线阅读 下载PDF
Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction
8
作者 Hongyu Wang Wenwu Cui +4 位作者 Kai Cui Zixuan Meng BinLi Wei Zhang Wenwen Li 《Energy Engineering》 2026年第1期332-355,共24页
To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobje... To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization. 展开更多
关键词 Carbon factor prediction electric vehicles ordered charging multi-objective optimization Crossformer
在线阅读 下载PDF
High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework
9
作者 Zheng Yao Puqing Chang 《Computers, Materials & Continua》 2026年第1期1160-1177,共18页
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays... As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality. 展开更多
关键词 Edge computing offload serial Isomerism applications many-objective optimization flexible resource scheduling
在线阅读 下载PDF
A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization
10
作者 Zhao Li Hongyu Xu +2 位作者 Shuai Zhang Jintao Cui Xiaofeng Liu 《Computers, Materials & Continua》 2026年第1期2213-2230,共18页
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m... The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples. 展开更多
关键词 Topology optimization MMC method boundary element reconstruction surrogate material model local mesh
在线阅读 下载PDF
CAPGen: An MLLM-Based Framework Integrated with Iterative Optimization Mechanism for Cultural Artifacts Poster Generation
11
作者 Qianqian Hu Chuhan Li +1 位作者 Mohan Zhang Fang Liu 《Computers, Materials & Continua》 2026年第1期494-510,共17页
Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural ... Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation. 展开更多
关键词 Aesthetic poster generation prompt engineering multimodal large language models iterative optimization design principles
在线阅读 下载PDF
Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems
12
作者 Junxiang Li Zhipeng Dong +2 位作者 Ben Han Jianqiao Chen Xinxin Zhang 《Computers, Materials & Continua》 2026年第1期1484-1502,共19页
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta... Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems. 展开更多
关键词 Dimension reduction modified principal components analysis high-dimensional optimization problems cooperative metaheuristics metaheuristic algorithms
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
13
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Multi-objective spatial optimization by considering land use suitability in the Yangtze River Delta region
14
作者 CHENG Qianwen LI Manchun +4 位作者 LI Feixue LIN Yukun DING Chenyin XIAO Lishan LI Weiyue 《Journal of Geographical Sciences》 2026年第1期45-78,共34页
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f... Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers. 展开更多
关键词 multi-objective spatial optimization multi-scenario simulation ecological protection importance comprehensive agricultural productivity urban sustainable development land-use suitability
原文传递
Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning
15
作者 Longfei Gao Weidong Wang Dieyun Ke 《Computers, Materials & Continua》 2026年第1期984-998,共15页
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ... At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems. 展开更多
关键词 Autonomous mobile robot deep reinforcement learning energy optimization multi-attention mechanism prioritized experience replay dueling deep Q-Network
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
16
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
Optimal scheduling method for multi-regional integrated energy system based on dynamic robust optimization algorithm and bi-level Stackelberg model
17
作者 Bo Zhou Erchao Li Wenjing Liang 《Global Energy Interconnection》 2025年第3期510-521,共12页
In this study,we construct a bi-level optimization model based on the Stackelberg game and propose a robust optimization algorithm for solving the bi-level model,assuming an actual situation with several participants ... In this study,we construct a bi-level optimization model based on the Stackelberg game and propose a robust optimization algorithm for solving the bi-level model,assuming an actual situation with several participants in energy trading.Firstly,the energy trading process is analyzed between each subject based on the establishment of the operation framework of multi-agent participation in energy trading.Secondly,the optimal operation model of each energy trading agent is established to develop a bi-level game model including each energy participant.Finally,a combination algorithm of improved robust optimization over time(ROOT)and CPLEX is proposed to solve the established game model.The experimental results indicate that under different fitness thresholds,the robust optimization results of the proposed algorithm are increased by 56.91%and 68.54%,respectively.The established bi-level game model effectively balances the benefits of different energy trading entities.The proposed algorithm proposed can increase the income of each participant in the game by an average of 8.59%. 展开更多
关键词 Robust optimization over time Integrated energy system Dynamic problem Stackelberg game
在线阅读 下载PDF
Bi-level optimization based two-stage market clearing model considering guaranteed accommodation of renewable energy generation 被引量:6
18
作者 Qianya He Zhenjia Lin +3 位作者 Haoyong Chen Xinyun Dai Yirui Li Xin Zeng 《Protection and Control of Modern Power Systems》 2022年第1期433-445,共13页
The existing electricity market mechanisms designed to promote the consumption of renewable energy generation complicate network participation in market transactions owing to an unfair market competition environment,w... The existing electricity market mechanisms designed to promote the consumption of renewable energy generation complicate network participation in market transactions owing to an unfair market competition environment,where the low cost renewable energy generation is not reflected in the high bidding price of high cost conventional energy generation.This study addresses this issue by proposing a bi-level optimization based two-stage market clearing model that considers the bidding strategies of market players,and guarantees the accommodation of renewable energy generation.The first stage implements a dual-market clearing mechanism that includes a unified market for trading the power generations of both renewable energy and conventional energy units,and a subsidy market reserved exclusively for conventional generation units.A re-adjustment clearing mechanism is then proposed in the second stage to accommodate the power generation of remaining renewable energy units after first stage energy allocations.Each stage of the proposed model is further described as a bi-level market equilibrium problem and is solved using a co-evolutionary algorithm.Finally,numerical results involving an improved IEEE 39-bus system dem-onstrate that the proposed two-stage model meets the basic requirements of incentive compatibility and individual rationality.It can facilitate the rational allocation of resources,promote the economical operation of electric power grids,and enhance social welfare. 展开更多
关键词 Market clearing Renewable energy Bidding strategy Guaranteed accommodation bi-level optimization Fair competition
在线阅读 下载PDF
Gradient-based algorithms for multi-objective bi-level optimization 被引量:1
19
作者 Xinmin Yang Wei Yao +2 位作者 Haian Yin Shangzhi Zeng Jin Zhang 《Science China Mathematics》 SCIE CSCD 2024年第6期1419-1438,共20页
Multi-objective bi-level optimization(MOBLO)addresses nested multi-objective optimization problems common in a range of applications.However,its multi-objective and hierarchical bi-level nature makes it notably comple... Multi-objective bi-level optimization(MOBLO)addresses nested multi-objective optimization problems common in a range of applications.However,its multi-objective and hierarchical bi-level nature makes it notably complex.Gradient-based MOBLO algorithms have recently grown in popularity,as they effectively solve crucial machine learning problems like meta-learning,neural architecture search,and reinforcement learning.Unfortunately,these algorithms depend on solving a sequence of approximation subproblems with high accuracy,resulting in adverse time and memory complexity that lowers their numerical efficiency.To address this issue,we propose a gradient-based algorithm for MOBLO,called gMOBA,which has fewer hyperparameters to tune,making it both simple and efficient.Additionally,we demonstrate the theoretical validity by accomplishing the desirable Pareto stationarity.Numerical experiments confirm the practical efficiency of the proposed method and verify the theoretical results.To accelerate the convergence of gMOBA,we introduce a beneficial L2O(learning to optimize)neural network(called L2O-gMOBA)implemented as the initialization phase of our gMOBA algorithm.Comparative results of numerical experiments are presented to illustrate the performance of L2O-gMOBA. 展开更多
关键词 MULTI-OBJECTIVE bi-level optimization convergence analysis Pareto stationary learning to optimize
原文传递
Bi-level optimization model applications in managing air emissions from ships:A review 被引量:2
20
作者 Jingwen Qi Shuaian Wang Harilaos Psaraftis 《Communications in Transportation Research》 2021年第1期171-175,共5页
Ship air emissions are recognized as one of the key concerns of the maritime industry.Competent authorities have issued various regulations to manage air emissions from ships.Although the authorities are policy makers... Ship air emissions are recognized as one of the key concerns of the maritime industry.Competent authorities have issued various regulations to manage air emissions from ships.Although the authorities are policy makers,the effectiveness of policies is up to the shipping industry who operates the vessels and terminals to fulfill maritime transportation works.Given this characteristic,bi-level optimization model has been widely adopted in studies that optimize policy design or evaluate its effectiveness.The framework of a typical bi-level optimization model for ship emission management problem is given to show the basic structure of similar issues.A series of applications of bi-level optimization model in managing ship emissions is reviewed,including cases of Energy Efficiency Design Index,Emissions Control Area,Market Based Measure,Carbon Intensity Indicator,and Vessel Speed Reduction Incentive Program.We hope this paper can enlighten scholars interested in this area and provide help for them. 展开更多
关键词 bi-level optimization model Ship air emissions Fleet deployment Ship operation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部