This study utilizes wet/dry cyclic corrosion testing combined with corrosion big data technology to investigate the mechanism by which chloride ions(Cl^(-))influence the corrosion behavior of 650 MPa high-strength low...This study utilizes wet/dry cyclic corrosion testing combined with corrosion big data technology to investigate the mechanism by which chloride ions(Cl^(-))influence the corrosion behavior of 650 MPa high-strength low-alloy(HSLA)steel in industrially polluted environments.The corrosion process of 650 MPa HSLA steel occurred in two distinct stages:an initial corrosion stage and a stable corrosion stage.During the initial phase,the weight loss rate increased rapidly owing to the instability of the rust layer.Notably,this study demonstrated that 650 MPa HSLA steel exhibited superior corrosion resistance in Cl-containing environments.The formation of a corrosion-product film eventually reduced the weight-loss rate.However,the intrusion of Cl^(-)at increasing concentrations gradually destabilized theα/γ^(*)phases of the rust layer,leading to a looser structure and lower polarization resistance(R_(p)).The application of corrosion big data technology in this study facilitated the validation and analysis of the experimental results,offering new insights into the corrosion mechanisms of HSLA steel in chloride-rich environments.展开更多
BACKGROUND Approximately 30%of patients with head and neck cancer experience adverse effects caused by anxiety and depression.Considering the high prevalence,implementing customized interventions to ease adverse emoti...BACKGROUND Approximately 30%of patients with head and neck cancer experience adverse effects caused by anxiety and depression.Considering the high prevalence,implementing customized interventions to ease adverse emotional states is imperative.AIM To evaluate the efficacy of cognitive behavioral therapy(CBT)-based psychological interventions in improving the psychological well-being and quality of life(QoL)of patients with laryngeal carcinoma.METHODS This study enrolled 120 patients admitted from February 2022 to February 2024.The control group,comprising 50 participants,received standard supportive psychological care,while the research group,consisting 70 participants,underwent CBT-based interventions.Several clinical outcomes were systematically assessed that included postoperative recovery metrics(duration of tracheostomy and nasogastric tube dependence and length of hospitalization),psychological status(Self-Rating Anxiety Scale and Self-Rating Depression Scale),nutritional markers(serum albumin and hemoglobin levels),sleep quality(Self-Rating Scale of Sleep and Athens Insomnia Scale),and QoL(Functional Assessment of Cancer Therapy-Head and Neck).RESULTS The results demonstrated that the research group experienced superior outcomes,with significantly reduced durations of tracheostomy and nasogastric tube dependence,as well as shorter hospital stays,compared with the control group.Additionally,the research group exhibited markedly lower post-intervention Self-Rating Anxiety Scale,Self-Rating Depression Scale,Self-Rating Scale of Sleep,and Athens Insomnia Scale scores,along with minimal but higher change in serum albumin and hemoglobin levels compared with the control group.All five domains of Functional Assessment of Cancer Therapy-Head and Neck showed notable improvements in the research group,exceeding those observed in the control group.CONCLUSION CBT-based psychological support positively affects the mental well-being and QoL of patients with laryngeal carcinoma,highlighting its potential for broader clinical application.展开更多
Diabetes mellitus(DM)has become one of the most serious and common chronic diseases around the world,leading to various complications and a reduction in life expectancy.Increased sedentary behavior(SB)and decreased ph...Diabetes mellitus(DM)has become one of the most serious and common chronic diseases around the world,leading to various complications and a reduction in life expectancy.Increased sedentary behavior(SB)and decreased physical activity(PA)are important contributors to the rising prevalence of DM.This article reviews the research progress on the pathogenesis of DM,the effects of SB and PA on the risk of DM,aiming to explore the influence of different PA intensities,amounts,frequencies,durations and types on the incidence of DM.Research has shown that blood glucose levels tend to increase with the prolongation of SB.Within a certain range,PA intensity and PA amount are negatively correlated with the risk of DM;Performing PA for more than 3 days per week maintains normal glucose tolerance and lower blood pressure;Engaging in 150–300 min of moderate intensity exercise or 75–150 min of high-intensity exercise per week reduces the risk of DM;PA during leisure time reduces the risk of DM,while PA during work increases the risk of DM;Both aerobic training and resistance training reduce the risk of DM,and the combination of the two training methods produces better benefits;Various types of exercises,such as cycling,soccer,aerobics,yoga,tai chi,all reduce the risk of DM.In summary,prolonged SB increases the risk of DM,while appropriate PA reduces the risk of DM.As the intensity,amount,and frequency of PA increase,the effect of reducing DM risk becomes more significant.Different exercise methods have different effects on reducing DM risk.展开更多
A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anod...A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture.展开更多
The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activit...The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of daily life. Wearables are applied in research, clinical practice, and as lifestyle devices;most obvious, they promise to be a key element for increasing human physical activity, one of the biggest health challenges nowadays.展开更多
Objective:This study aimed to examine the reliability and validity of the Chinese version of the Behavioral Inhibition System/Behavioral Activation System(BIS/BAS)scales among stroke survivors.Methods:The cross-sectio...Objective:This study aimed to examine the reliability and validity of the Chinese version of the Behavioral Inhibition System/Behavioral Activation System(BIS/BAS)scales among stroke survivors.Methods:The cross-sectional study was conducted at four comprehensive hospitals in Taizhou,Jiangsu,China.A sample of 232 first-ever stroke survivors were recruited from June to August 2023.Validity was examined using face validity and construct validity,which used confirmatory factor analysis(CFA)and known-group analysis.Reliability was evaluated by internal consistency and test-retest reliability.Results:The BIS/BAS scales demonstrated satisfactory face validity.The findings of CFAs supported the original four-factor structure of BAS-reward,BAS-drive,BAS-fun seeking,and BIS with acceptable model fit indices.Discriminative validity,assessed via known-group analysis,indicated that stroke survivors with probable depression had significantly lower mean BAS-reward,BAS-drive,and BAS-fun seeking scores(P<0.001)and a higher mean BIS score(P=0.028)compared to those without probable depression.The internal consistency,measured by Cronbach’s a coefficients for the subscales,ranged from 0.669 to 0.964.Test-retest reliability,assessed using intra-class correlation coefficients,ranged from 0.61 to 0.93.Conclusions:The Chinese version of the BIS/BAS scales could be a reliable and valid instrument for measuring behavioral activation among stroke survivors.展开更多
The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffra...The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),X-ray photoelectron spectroscopy(XPS),electrochemical measurements and tensile tests.The results reveal that a microstructure consisting of dynamically recrystallized and deformed grains is obtained.Notably,the investigated alloy exhibits excellent strength−ductility synergy,with tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation(EL)of 254.8 MPa,315.4 MPa,and 25.3%,respectively.Furthermore,in 3.5 wt.%NaCl solution,with the increase of immersion time,the dominant corrosion mechanism of the studied alloy transforms from pitting corrosion to filiform corrosion.After the immersion for 24 h,a composite oxide film(SnO2−Bi2O3−In2O3)is formed,which delays the corrosion process,and the corrosion rate(PH=1.53 mm/a)is finally stabilized.展开更多
Magnesium matrix composites with both high strength and ductility have been achieved by introducing pure Ti particles.However,the properties of the surfaces of the composites need to be improved by surface technology,...Magnesium matrix composites with both high strength and ductility have been achieved by introducing pure Ti particles.However,the properties of the surfaces of the composites need to be improved by surface technology,such as micro-arc oxidation(MAO).In this study,we investigated the influence of the Ti-reinforcement phase on coating growth and evolution by subjecting both AZ91 alloy and AZ91/Ti composite to MAO treatment using silicate-based and phosphate-based electrolytes.Results revealed that the Ti-reinforcement phase influenced the MAO process,altering discharge behavior,and leading to a decreased cell voltage.The vigorous discharge of the Ti-reinforcement phase induced the formation of coating discharge channels,concurrently dissolving and oxidizing Ti-reinforcement to produce a composite ceramic coating with TiO2.The MAO coating on the AZ91/Ti composite exhibited a dark blue macromorphology and distinctive local micromorphological anomalies.In silicate electrolyte,a“volcano-like”localized morphology centered on the discharge channel emerged.In contrast,treatment in phosphate-based electrolyte resulted in a coating morphology similar to typical porous ceramic coatings,with visible radial discharge micropores at the reinforcement phase location.Compared to the AZ91 alloy,the coating on the AZ91/Ti composite exhibited lower thickness and higher porosity.MAO treatment reduced the self-corrosion current density of the AZ91/Ti surface by two orders of magnitude.The silicate coating demonstrated better corrosion resistance than the phosphate coating,attributed to its lower porosity.The formation mechanism of MAO coatings on AZ91/Ti composites in phosphate-based and silicate-based electrolytes was proposed.展开更多
Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological b...Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological behavior of AZ91D magnesium alloy rubbed against GCr15 steel was studied under lubricating oil with surface-modified MSH nanotubes as additives.The effects of the concentration,applied load,and reciprocating frequency on the friction and wear of the AZ91D alloy were studied using an SRV-4 sliding wear tester.Results show a decrease of 18.7–68.5%in friction coefficient,and a reduction of 19.4–54.3%in wear volume of magnesium alloy can be achieved by applying the synthetic serpentine additive under different conditions.A suspension containing 0.3 wt.%MSH was most efficient in reducing wear and friction.High frequency and medium load were more conducive to improving the tribological properties of magnesium alloys.A series of beneficial physical and chemical processes occurring at the AZ91D alloy/steel interface can be used to explain friction and wear reduction based on the characterization of the morphology,chemical composition,chemical state,microstructure,and nanomechanical properties of the worn surface.The synthetic MSH,with serpentine structure and nanotube morphology,possesses excellent adsorbability,high chemical activity,and good self-lubrication and catalytic activity.Therefore,physical polishing,tribochemical reactions,and physicalchemical depositions can occur easily on the sliding contacts.A dense tribolayer with a complex composition and composite structure was formed on the worn surface.Its high hardness,good toughness and plasticity,and prominent lubricity resulted in the improvement of friction and wear,making the synthetic MSH a promising efficient oil additive for magnesium alloys under boundary and mixed lubrication.展开更多
Mitochondria play a crucial role as organelles,managing several physiological processes such as redox balance,cell metabolism,and energy synthesis.Initially,the assumption was that mitochondria primarily resided in th...Mitochondria play a crucial role as organelles,managing several physiological processes such as redox balance,cell metabolism,and energy synthesis.Initially,the assumption was that mitochondria primarily resided in the host cells and could exclusively transmit from oocytes to offspring by a mechanism known as vertical inheritance of mitochondria.Recent scholarly works,however,suggest that certain cell types transmit their mitochondria to other developmental cell types via a mechanism referred to as intercellular or horizontal mitochondrial transfer.This review details the process of which mitochondria are transferred across cells and explains the impact of mitochondrial transfer between cells on the efficacy and functionality of cancer cells in various cancer forms.Specifically,we review the role of mitochondria transfer in regulating cellular metabolism restoration,excess reactive oxygen species(ROS)generation,proliferation,invasion,metastasis,mitophagy activation,mitochondrial DNA(mtDNA)inheritance,immune system modulation and therapeutic resistance in cancer.Additionally,we highlight the possibility of using intercellular mitochondria transfer as a therapeutic approach to treat cancer and enhance the efficacy of cancer treatments.展开更多
The performance of Mg alloys is significantly influenced by the concentrations and solid solution behavior of the alloying elements.In this work,the solid solution behavior of 20 alloying elements in 190 ternary Mg al...The performance of Mg alloys is significantly influenced by the concentrations and solid solution behavior of the alloying elements.In this work,the solid solution behavior of 20 alloying elements in 190 ternary Mg alloy systems at 500℃are systematically investigated.The solid solution behavior of a set of two different alloying elements in Mg alloy systems are suggested to be classified into three categories:inclusivity,exclusivity and proportionality.Inclusivity classification indicates that the two alloying elements are inclusive inα-Mg,increasing the joint solubility of both elements.Exclusivity classification suggests that the two alloying elements have a low joint solid solubility inα-Mg,since they prefer to form stable second phases.For the proportionality classification,the solubility curve of the ternary Mg alloy systems is a straight line connecting the solubility points of the two sub-binary systems.The proposed classification theory was validated by key experiments and the calculation of formation energies.The interaction effects between alloying elements and the preference of formation of second phases are the main factors determining the solid solution behavior classifications.Based on the observed solid solution features of multi-component Mg alloys,principles for alloy design of different types of high-performance Mg alloys were proposed in this work.展开更多
Objective:This study aimed to determine the effect of a culture-specificbehavior modificationprogram on glycated hemoglobin(HbA1c)and blood pressure among adults with diabetes and hypertension.Methods:This study was a...Objective:This study aimed to determine the effect of a culture-specificbehavior modificationprogram on glycated hemoglobin(HbA1c)and blood pressure among adults with diabetes and hypertension.Methods:This study was a single-blind randomized controlled trial design.From January to May 2024,a total of 60 patients with uncontrolled type 2 diabetes and hypertension from the primary care unit of a hospital in northeastern(Isan)Thailand were recruited.The intervention group received the usual care supplemented by a culture-specificbehavior modificationprogramm implemented through interactive classes and online web application consisting of information,motivation,and behavioral skills(diet,exercise,and medication use),the control group received the usual care.HbA1c and blood pressure measurements were collected at both baseline and at 12 weeks.Results:A total of 51 patients completed the study,the intervention group(n=26)and control group(n=25),respectively.After 12 weeks,23.1%of patients in the intervention group could maintain their HbA1c<7.0%;those with poorly controlled HbA1c decreased from 7.7%at baseline to 3.8%at 12 weeks.After 12 weeks,69.2%of intervention group participants could maintain systolic blood pressure<130 mmHg and 53.8%could keep diastolic blood pressure<80 mmHg.Analysis revealed that HbA1c,systolic and diastolic blood pressure levels in the intervention group were lower than the control group after the intervention(P<0.05).There was a statistically significantdifference a linear combination of HbA1c and blood pressure(systolic and diastolic BP levels)between time and group(P<0.05).Conclusion:These results suggest that healthcare providers can incorporate elements of this program to manage blood glucose and blood pressure effectively.Future studies should consider a longitudinal design with a larger sample size and include outcomes of lipid levels to confirmlong-term motivation.展开更多
Electrocatalytic urea wastewater treatment technology has emerged as a promising method for environmental remediation.However,the realization of highly efficient and scalable electrocatalytic urea wastewater treatment...Electrocatalytic urea wastewater treatment technology has emerged as a promising method for environmental remediation.However,the realization of highly efficient and scalable electrocatalytic urea wastewater treatment(SEUWT)is still an enormous challenge.Herein,through regulating the adsorption behavior of urea functional groups,the efficient SEUWT coupled hydrogen production is realized in anion exchange membrane water electrolyzer(AEMWE).Density functional theory calculations indicate that self-driven electron transfer at the heterogeneous interface(NiO/Co_(3)O_(4))can induce charge redistribution,resulting in electron-rich NiO and electron-deficient Co_(3)O_(4),which are superior to adsorbing C=O(electron-withdrawing group)and–NH_(2)(electron-donating group),respectively,regulating the adsorption behavior of urea molecule and accelerating the reaction kinetics of urea oxidation.This viewpoint is further verified by temperature-programmed desorption experiments.The SEUWT coupled hydrogen production in AEMWE assembled with NiO/Co_(3)O_(4)(anode)and NiCoP(cathode)can continuously treat urea wastewater at an initial current density of 600 mA cm^(-2),with the average urea treatment efficiency about 53%.Compared with overall water splitting,the H_(2) production rate(8.33 mmol s^(-1))increases by approximately 3.5 times.This work provides a cost-effective strategy for scalable purifying urea-rich wastewater and energy-saving hydrogen production.展开更多
This study aims to explore the characteristics of novice teachers’inappropriate behaviors in classroom teaching and their intervention strategies.With the continuous improvement of education quality,novice teachers f...This study aims to explore the characteristics of novice teachers’inappropriate behaviors in classroom teaching and their intervention strategies.With the continuous improvement of education quality,novice teachers face increasing challenges in teaching practice.Their inappropriate behaviors not only affect the classroom atmosphere but may also negatively impact students’learning outcomes.Therefore,researching the characteristics of novice teachers’inappropriate behaviors and their intervention strategies holds significant scientific and social value.This study employs a combination of quantitative and qualitative methods to analyze the behavioral patterns of novice teachers in classroom teaching and proposes corresponding intervention strategies.The results indicate that novice teachers’inappropriate behaviors mainly manifest as poor classroom management,monotonous teaching methods,and insufficient interaction with students.Based on these findings,the study proposes a series of effective intervention strategies,including enhancing teacher training,optimizing teaching design,and promoting positive interactions between teachers and students.The conclusions of the study not only provide practical guidance for educational practice but also point out directions for future research,emphasizing the crucial role of teacher professional development in improving teaching quality.展开更多
The good combination of mechanical and wear properties for cemented carbides is crucial.In this work,the wear behavior of functionally graded cemented carbide(FGCC)and non-graded cemented carbide(CC),with CoNiFeCr mul...The good combination of mechanical and wear properties for cemented carbides is crucial.In this work,the wear behavior of functionally graded cemented carbide(FGCC)and non-graded cemented carbide(CC),with CoNiFeCr multi-principal-element alloy(MPEA)binder,has been investigated by performing sliding wear tests and composition characterization.The results showed that compared with CC,FGCC had higher hardness,stronger fracture toughness,better wear performance,and similar TRS.FGCCs exhibited lower wear rates(3.44×10^(−7)–6.95×10^(−6)mm^(3)/(N m))and coefficients of friction(COFs)(0.27–0.39)than CCs from RT to 600℃due to mitigation of multiple risks caused by binder removal,fragmentation and pull-out of WC grains,high-temperature oxidation and softening.In the low-temperature wear stage,the MPEA binder underwent dynamic recrystallization(DRX)and twinning deformation before removing from the surface.The binder removal caused dislocation pile-ups and stacking faults(SFs)to form under high stress,resulting in fragmentation and pull-out of WC grains.The low-temperature wear was dominated by abrasive wear and adhesive wear,with a low wear rate and a high and unstable COF.In the high-temperature wear stage,initial pitting oxidation of WC grains generated many subgrain boundaries,reducing heat transfer and exacerbating oxidation,resulting in an oxide layer enriched with WO3,Mx Oy,and MWO4.High-temperature wear was dominated by oxidation wear and high-temperature softening,with a high wear rate and a low and smooth COF.The results from the present study do not only provide theoretical guidance for an understanding of the antiwear mechanism of WC-CoNiFeCr,but also a new approach for the preparation of cemented carbides with high wear resistance.展开更多
The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique natu...The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.展开更多
In order to reveal the effect of 2-hydroxy-3-naphthyl hydroxamic acid(H205)on the flotation behavior and action mechanism of bastnaesite,single-mineral flotation experiments of bastnaesite were conducted.The flotation...In order to reveal the effect of 2-hydroxy-3-naphthyl hydroxamic acid(H205)on the flotation behavior and action mechanism of bastnaesite,single-mineral flotation experiments of bastnaesite were conducted.The flotation recovery of bastnaesites can be achieved more than 90%when the aeration rate is 40 mL/min,the rotational speed is 200 r/min,the H205 dosage is 120 mg/L,and the pulp pH ranges from 7 to 9.The action mechanism of H205 on the surface of bastnaesite was studied by simultaneous thermogravimetry and differential scanning calorimetry(TG-DSC),Zeta potential measurements,Fourier transform-infrared spectra(FT-IR)and X-ray photoelectron spectroscopy(XPS).These analysis results show that under suitable flotation conditions,H205 has an obvious adsorption phenomenon on the surface of bastnaesite.The adsorption involves electrostatic interactions and chemical interactions,namely H205 has a strong collecting ability of bastnaesite due to the synergism of electrostatic adsorption and chemical adsorption.This study systematically reveals the flotation behavior and adsorption mechanism of H205 on the surface of bastnaesite,and provides useful theoretical guidance for efficient flotation separation of bastnaesite.展开更多
Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an...Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.展开更多
Type 2 diabetes(T2D)is an insidious disease associated with neural and vascular complications,acceleration of cardiovascular disease,changes in heart function,and premature death.In the newly released article of the J...Type 2 diabetes(T2D)is an insidious disease associated with neural and vascular complications,acceleration of cardiovascular disease,changes in heart function,and premature death.In the newly released article of the Journal of Sport and Health Science,Liang et al.1 describe results from the UK Biobank data showing the benefits of moderate-to-vigorous intensity physical activity(MVPA)on reducing the risks for vascular events in 11,474 adults with T2D and prediabetes.展开更多
The pre-weld heat treatment was carried out to obtain different initial microstructures of the GH4169 superalloy,and then Linear Friction Welding(LFW)was performed.The effect of the pre-weld heat treatment on the micr...The pre-weld heat treatment was carried out to obtain different initial microstructures of the GH4169 superalloy,and then Linear Friction Welding(LFW)was performed.The effect of the pre-weld heat treatment on the microstructure evolution and mechanical properties of the joint was analyzed,and the joint electrochemical corrosion behavior as well as the hot corrosion behavior was studied.The results show that the joint hardness of Base Metal(BM)increases after pre-weld heat treatment,and the strengthening phasesγ′andγ″further precipitate.However,the precipitation phases dissolve significantly in the Weld Zone(WZ)due to the thermal process of LFW.The corrosion resistance in BM is reduced after the pre-weld heat treatment,while it is similar in WZ with a slight decrease.The surface morphology of the BM and WZ can be generally divided into a loose and porous matrix and a scattered oxide particle layer after hot corrosion.The joint cross section exhibits a Cr-depleted zone with the diffusion of Cr to form an oxide film.The corrosion product mainly consists of Fe_(2)O_(3)/Fe_(3)O_(4) as the outer layer and Cr_(2)O_(3) as the inner layer.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52104319 and 52374323)。
文摘This study utilizes wet/dry cyclic corrosion testing combined with corrosion big data technology to investigate the mechanism by which chloride ions(Cl^(-))influence the corrosion behavior of 650 MPa high-strength low-alloy(HSLA)steel in industrially polluted environments.The corrosion process of 650 MPa HSLA steel occurred in two distinct stages:an initial corrosion stage and a stable corrosion stage.During the initial phase,the weight loss rate increased rapidly owing to the instability of the rust layer.Notably,this study demonstrated that 650 MPa HSLA steel exhibited superior corrosion resistance in Cl-containing environments.The formation of a corrosion-product film eventually reduced the weight-loss rate.However,the intrusion of Cl^(-)at increasing concentrations gradually destabilized theα/γ^(*)phases of the rust layer,leading to a looser structure and lower polarization resistance(R_(p)).The application of corrosion big data technology in this study facilitated the validation and analysis of the experimental results,offering new insights into the corrosion mechanisms of HSLA steel in chloride-rich environments.
文摘BACKGROUND Approximately 30%of patients with head and neck cancer experience adverse effects caused by anxiety and depression.Considering the high prevalence,implementing customized interventions to ease adverse emotional states is imperative.AIM To evaluate the efficacy of cognitive behavioral therapy(CBT)-based psychological interventions in improving the psychological well-being and quality of life(QoL)of patients with laryngeal carcinoma.METHODS This study enrolled 120 patients admitted from February 2022 to February 2024.The control group,comprising 50 participants,received standard supportive psychological care,while the research group,consisting 70 participants,underwent CBT-based interventions.Several clinical outcomes were systematically assessed that included postoperative recovery metrics(duration of tracheostomy and nasogastric tube dependence and length of hospitalization),psychological status(Self-Rating Anxiety Scale and Self-Rating Depression Scale),nutritional markers(serum albumin and hemoglobin levels),sleep quality(Self-Rating Scale of Sleep and Athens Insomnia Scale),and QoL(Functional Assessment of Cancer Therapy-Head and Neck).RESULTS The results demonstrated that the research group experienced superior outcomes,with significantly reduced durations of tracheostomy and nasogastric tube dependence,as well as shorter hospital stays,compared with the control group.Additionally,the research group exhibited markedly lower post-intervention Self-Rating Anxiety Scale,Self-Rating Depression Scale,Self-Rating Scale of Sleep,and Athens Insomnia Scale scores,along with minimal but higher change in serum albumin and hemoglobin levels compared with the control group.All five domains of Functional Assessment of Cancer Therapy-Head and Neck showed notable improvements in the research group,exceeding those observed in the control group.CONCLUSION CBT-based psychological support positively affects the mental well-being and QoL of patients with laryngeal carcinoma,highlighting its potential for broader clinical application.
基金Key Project of Undergraduate Teaching Reform Research of Shandong Normal University(No.2024ZJ12)sixth batch of"Sports and Health"special topic of Education Research of Chinese Society of Education。
文摘Diabetes mellitus(DM)has become one of the most serious and common chronic diseases around the world,leading to various complications and a reduction in life expectancy.Increased sedentary behavior(SB)and decreased physical activity(PA)are important contributors to the rising prevalence of DM.This article reviews the research progress on the pathogenesis of DM,the effects of SB and PA on the risk of DM,aiming to explore the influence of different PA intensities,amounts,frequencies,durations and types on the incidence of DM.Research has shown that blood glucose levels tend to increase with the prolongation of SB.Within a certain range,PA intensity and PA amount are negatively correlated with the risk of DM;Performing PA for more than 3 days per week maintains normal glucose tolerance and lower blood pressure;Engaging in 150–300 min of moderate intensity exercise or 75–150 min of high-intensity exercise per week reduces the risk of DM;PA during leisure time reduces the risk of DM,while PA during work increases the risk of DM;Both aerobic training and resistance training reduce the risk of DM,and the combination of the two training methods produces better benefits;Various types of exercises,such as cycling,soccer,aerobics,yoga,tai chi,all reduce the risk of DM.In summary,prolonged SB increases the risk of DM,while appropriate PA reduces the risk of DM.As the intensity,amount,and frequency of PA increase,the effect of reducing DM risk becomes more significant.Different exercise methods have different effects on reducing DM risk.
基金partially supported by the National Natural Science Foundation of China(No.51901153)Shanxi Scholarship Council of China(No.2019032)+1 种基金the Natural Science Foundation of Shanxi,China(No.202103021224049)the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China(No.2022SX-TD025)。
文摘A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture.
基金funded in part by the German Research Foundation(Grant reference:496846758).
文摘The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of daily life. Wearables are applied in research, clinical practice, and as lifestyle devices;most obvious, they promise to be a key element for increasing human physical activity, one of the biggest health challenges nowadays.
文摘Objective:This study aimed to examine the reliability and validity of the Chinese version of the Behavioral Inhibition System/Behavioral Activation System(BIS/BAS)scales among stroke survivors.Methods:The cross-sectional study was conducted at four comprehensive hospitals in Taizhou,Jiangsu,China.A sample of 232 first-ever stroke survivors were recruited from June to August 2023.Validity was examined using face validity and construct validity,which used confirmatory factor analysis(CFA)and known-group analysis.Reliability was evaluated by internal consistency and test-retest reliability.Results:The BIS/BAS scales demonstrated satisfactory face validity.The findings of CFAs supported the original four-factor structure of BAS-reward,BAS-drive,BAS-fun seeking,and BIS with acceptable model fit indices.Discriminative validity,assessed via known-group analysis,indicated that stroke survivors with probable depression had significantly lower mean BAS-reward,BAS-drive,and BAS-fun seeking scores(P<0.001)and a higher mean BIS score(P=0.028)compared to those without probable depression.The internal consistency,measured by Cronbach’s a coefficients for the subscales,ranged from 0.669 to 0.964.Test-retest reliability,assessed using intra-class correlation coefficients,ranged from 0.61 to 0.93.Conclusions:The Chinese version of the BIS/BAS scales could be a reliable and valid instrument for measuring behavioral activation among stroke survivors.
基金supported by the National Natural Science Foundation of China(No.51901153)the Natural Science Foundation of Shanxi,China(No.202103021224049)+1 种基金the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China(No.2022SX-TD025)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University,China(No.2023-DXSSKF-Z02).
文摘The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),X-ray photoelectron spectroscopy(XPS),electrochemical measurements and tensile tests.The results reveal that a microstructure consisting of dynamically recrystallized and deformed grains is obtained.Notably,the investigated alloy exhibits excellent strength−ductility synergy,with tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation(EL)of 254.8 MPa,315.4 MPa,and 25.3%,respectively.Furthermore,in 3.5 wt.%NaCl solution,with the increase of immersion time,the dominant corrosion mechanism of the studied alloy transforms from pitting corrosion to filiform corrosion.After the immersion for 24 h,a composite oxide film(SnO2−Bi2O3−In2O3)is formed,which delays the corrosion process,and the corrosion rate(PH=1.53 mm/a)is finally stabilized.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030006).
文摘Magnesium matrix composites with both high strength and ductility have been achieved by introducing pure Ti particles.However,the properties of the surfaces of the composites need to be improved by surface technology,such as micro-arc oxidation(MAO).In this study,we investigated the influence of the Ti-reinforcement phase on coating growth and evolution by subjecting both AZ91 alloy and AZ91/Ti composite to MAO treatment using silicate-based and phosphate-based electrolytes.Results revealed that the Ti-reinforcement phase influenced the MAO process,altering discharge behavior,and leading to a decreased cell voltage.The vigorous discharge of the Ti-reinforcement phase induced the formation of coating discharge channels,concurrently dissolving and oxidizing Ti-reinforcement to produce a composite ceramic coating with TiO2.The MAO coating on the AZ91/Ti composite exhibited a dark blue macromorphology and distinctive local micromorphological anomalies.In silicate electrolyte,a“volcano-like”localized morphology centered on the discharge channel emerged.In contrast,treatment in phosphate-based electrolyte resulted in a coating morphology similar to typical porous ceramic coatings,with visible radial discharge micropores at the reinforcement phase location.Compared to the AZ91 alloy,the coating on the AZ91/Ti composite exhibited lower thickness and higher porosity.MAO treatment reduced the self-corrosion current density of the AZ91/Ti surface by two orders of magnitude.The silicate coating demonstrated better corrosion resistance than the phosphate coating,attributed to its lower porosity.The formation mechanism of MAO coatings on AZ91/Ti composites in phosphate-based and silicate-based electrolytes was proposed.
基金support from the National Natural Science Foundation of China(grant number 52075544)Innovation Funds of Jihua Laboratory(X220971UZ230)+1 种基金Basic and Applied Basic Research Foundation of Guangdong Province(2022A1515110649)Funds from Research Platforms of Guangdong Higher Education Institutes(2022ZDJS038).
文摘Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological behavior of AZ91D magnesium alloy rubbed against GCr15 steel was studied under lubricating oil with surface-modified MSH nanotubes as additives.The effects of the concentration,applied load,and reciprocating frequency on the friction and wear of the AZ91D alloy were studied using an SRV-4 sliding wear tester.Results show a decrease of 18.7–68.5%in friction coefficient,and a reduction of 19.4–54.3%in wear volume of magnesium alloy can be achieved by applying the synthetic serpentine additive under different conditions.A suspension containing 0.3 wt.%MSH was most efficient in reducing wear and friction.High frequency and medium load were more conducive to improving the tribological properties of magnesium alloys.A series of beneficial physical and chemical processes occurring at the AZ91D alloy/steel interface can be used to explain friction and wear reduction based on the characterization of the morphology,chemical composition,chemical state,microstructure,and nanomechanical properties of the worn surface.The synthetic MSH,with serpentine structure and nanotube morphology,possesses excellent adsorbability,high chemical activity,and good self-lubrication and catalytic activity.Therefore,physical polishing,tribochemical reactions,and physicalchemical depositions can occur easily on the sliding contacts.A dense tribolayer with a complex composition and composite structure was formed on the worn surface.Its high hardness,good toughness and plasticity,and prominent lubricity resulted in the improvement of friction and wear,making the synthetic MSH a promising efficient oil additive for magnesium alloys under boundary and mixed lubrication.
基金supported by the National Natural Science Foundation of China(Grant No.:82272749)the Natural Science Foundation of Liaoning Province,China(Grant No.:2022-MS-190).
文摘Mitochondria play a crucial role as organelles,managing several physiological processes such as redox balance,cell metabolism,and energy synthesis.Initially,the assumption was that mitochondria primarily resided in the host cells and could exclusively transmit from oocytes to offspring by a mechanism known as vertical inheritance of mitochondria.Recent scholarly works,however,suggest that certain cell types transmit their mitochondria to other developmental cell types via a mechanism referred to as intercellular or horizontal mitochondrial transfer.This review details the process of which mitochondria are transferred across cells and explains the impact of mitochondrial transfer between cells on the efficacy and functionality of cancer cells in various cancer forms.Specifically,we review the role of mitochondria transfer in regulating cellular metabolism restoration,excess reactive oxygen species(ROS)generation,proliferation,invasion,metastasis,mitophagy activation,mitochondrial DNA(mtDNA)inheritance,immune system modulation and therapeutic resistance in cancer.Additionally,we highlight the possibility of using intercellular mitochondria transfer as a therapeutic approach to treat cancer and enhance the efficacy of cancer treatments.
基金financially supported by National Natural Science Foundation of China(grant numbers:52171100,U20A20234)National Key R&D Program of China(grant number:2021YFB3701100)。
文摘The performance of Mg alloys is significantly influenced by the concentrations and solid solution behavior of the alloying elements.In this work,the solid solution behavior of 20 alloying elements in 190 ternary Mg alloy systems at 500℃are systematically investigated.The solid solution behavior of a set of two different alloying elements in Mg alloy systems are suggested to be classified into three categories:inclusivity,exclusivity and proportionality.Inclusivity classification indicates that the two alloying elements are inclusive inα-Mg,increasing the joint solubility of both elements.Exclusivity classification suggests that the two alloying elements have a low joint solid solubility inα-Mg,since they prefer to form stable second phases.For the proportionality classification,the solubility curve of the ternary Mg alloy systems is a straight line connecting the solubility points of the two sub-binary systems.The proposed classification theory was validated by key experiments and the calculation of formation energies.The interaction effects between alloying elements and the preference of formation of second phases are the main factors determining the solid solution behavior classifications.Based on the observed solid solution features of multi-component Mg alloys,principles for alloy design of different types of high-performance Mg alloys were proposed in this work.
基金supported by the 90th Anniversary of Chulalong-korn University Scholarship(Ratchadaphiseksomphot Endowment Fund)。
文摘Objective:This study aimed to determine the effect of a culture-specificbehavior modificationprogram on glycated hemoglobin(HbA1c)and blood pressure among adults with diabetes and hypertension.Methods:This study was a single-blind randomized controlled trial design.From January to May 2024,a total of 60 patients with uncontrolled type 2 diabetes and hypertension from the primary care unit of a hospital in northeastern(Isan)Thailand were recruited.The intervention group received the usual care supplemented by a culture-specificbehavior modificationprogramm implemented through interactive classes and online web application consisting of information,motivation,and behavioral skills(diet,exercise,and medication use),the control group received the usual care.HbA1c and blood pressure measurements were collected at both baseline and at 12 weeks.Results:A total of 51 patients completed the study,the intervention group(n=26)and control group(n=25),respectively.After 12 weeks,23.1%of patients in the intervention group could maintain their HbA1c<7.0%;those with poorly controlled HbA1c decreased from 7.7%at baseline to 3.8%at 12 weeks.After 12 weeks,69.2%of intervention group participants could maintain systolic blood pressure<130 mmHg and 53.8%could keep diastolic blood pressure<80 mmHg.Analysis revealed that HbA1c,systolic and diastolic blood pressure levels in the intervention group were lower than the control group after the intervention(P<0.05).There was a statistically significantdifference a linear combination of HbA1c and blood pressure(systolic and diastolic BP levels)between time and group(P<0.05).Conclusion:These results suggest that healthcare providers can incorporate elements of this program to manage blood glucose and blood pressure effectively.Future studies should consider a longitudinal design with a larger sample size and include outcomes of lipid levels to confirmlong-term motivation.
基金supported by the National Natural Science Foundation of China(Grant Nos.22162025,22168040)the Youth Innovation Team of Shaanxi Universities,the Open and Innovation Fund of Hubei Three Gorges Laboratory(SK232001)the Regional Innovation Capability Leading Program of Shaanxi(2022QFY07-03,2022QFY07-06).
文摘Electrocatalytic urea wastewater treatment technology has emerged as a promising method for environmental remediation.However,the realization of highly efficient and scalable electrocatalytic urea wastewater treatment(SEUWT)is still an enormous challenge.Herein,through regulating the adsorption behavior of urea functional groups,the efficient SEUWT coupled hydrogen production is realized in anion exchange membrane water electrolyzer(AEMWE).Density functional theory calculations indicate that self-driven electron transfer at the heterogeneous interface(NiO/Co_(3)O_(4))can induce charge redistribution,resulting in electron-rich NiO and electron-deficient Co_(3)O_(4),which are superior to adsorbing C=O(electron-withdrawing group)and–NH_(2)(electron-donating group),respectively,regulating the adsorption behavior of urea molecule and accelerating the reaction kinetics of urea oxidation.This viewpoint is further verified by temperature-programmed desorption experiments.The SEUWT coupled hydrogen production in AEMWE assembled with NiO/Co_(3)O_(4)(anode)and NiCoP(cathode)can continuously treat urea wastewater at an initial current density of 600 mA cm^(-2),with the average urea treatment efficiency about 53%.Compared with overall water splitting,the H_(2) production rate(8.33 mmol s^(-1))increases by approximately 3.5 times.This work provides a cost-effective strategy for scalable purifying urea-rich wastewater and energy-saving hydrogen production.
文摘This study aims to explore the characteristics of novice teachers’inappropriate behaviors in classroom teaching and their intervention strategies.With the continuous improvement of education quality,novice teachers face increasing challenges in teaching practice.Their inappropriate behaviors not only affect the classroom atmosphere but may also negatively impact students’learning outcomes.Therefore,researching the characteristics of novice teachers’inappropriate behaviors and their intervention strategies holds significant scientific and social value.This study employs a combination of quantitative and qualitative methods to analyze the behavioral patterns of novice teachers in classroom teaching and proposes corresponding intervention strategies.The results indicate that novice teachers’inappropriate behaviors mainly manifest as poor classroom management,monotonous teaching methods,and insufficient interaction with students.Based on these findings,the study proposes a series of effective intervention strategies,including enhancing teacher training,optimizing teaching design,and promoting positive interactions between teachers and students.The conclusions of the study not only provide practical guidance for educational practice but also point out directions for future research,emphasizing the crucial role of teacher professional development in improving teaching quality.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3701800)Special funding support for the Yuelu Mountain National University Science and Technology City“Ranking the Top of the List”Research Project:(Tunnel Boring Machine High-performance Long-life Cutting Tools)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘The good combination of mechanical and wear properties for cemented carbides is crucial.In this work,the wear behavior of functionally graded cemented carbide(FGCC)and non-graded cemented carbide(CC),with CoNiFeCr multi-principal-element alloy(MPEA)binder,has been investigated by performing sliding wear tests and composition characterization.The results showed that compared with CC,FGCC had higher hardness,stronger fracture toughness,better wear performance,and similar TRS.FGCCs exhibited lower wear rates(3.44×10^(−7)–6.95×10^(−6)mm^(3)/(N m))and coefficients of friction(COFs)(0.27–0.39)than CCs from RT to 600℃due to mitigation of multiple risks caused by binder removal,fragmentation and pull-out of WC grains,high-temperature oxidation and softening.In the low-temperature wear stage,the MPEA binder underwent dynamic recrystallization(DRX)and twinning deformation before removing from the surface.The binder removal caused dislocation pile-ups and stacking faults(SFs)to form under high stress,resulting in fragmentation and pull-out of WC grains.The low-temperature wear was dominated by abrasive wear and adhesive wear,with a low wear rate and a high and unstable COF.In the high-temperature wear stage,initial pitting oxidation of WC grains generated many subgrain boundaries,reducing heat transfer and exacerbating oxidation,resulting in an oxide layer enriched with WO3,Mx Oy,and MWO4.High-temperature wear was dominated by oxidation wear and high-temperature softening,with a high wear rate and a low and smooth COF.The results from the present study do not only provide theoretical guidance for an understanding of the antiwear mechanism of WC-CoNiFeCr,but also a new approach for the preparation of cemented carbides with high wear resistance.
基金Project(42202318)supported by the National Natural Science Foundation of ChinaProject(252300421199)supported by the Natural Science Foundation of Henan Province,ChinaProject(2024JJ6219)supported by the Hunan Provincial Natural Science Foundation of China。
文摘The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.
基金Project supported by the Natural Science Foundation Innovation Group Project of Hubei Province(2023AFA044)the National Natural Science Foundation of China(52222405)+1 种基金the Science and Technology Research Project of Education Department of Hubei Province(Q20221505)the China Postdoctoral Science(2023M731041)。
文摘In order to reveal the effect of 2-hydroxy-3-naphthyl hydroxamic acid(H205)on the flotation behavior and action mechanism of bastnaesite,single-mineral flotation experiments of bastnaesite were conducted.The flotation recovery of bastnaesites can be achieved more than 90%when the aeration rate is 40 mL/min,the rotational speed is 200 r/min,the H205 dosage is 120 mg/L,and the pulp pH ranges from 7 to 9.The action mechanism of H205 on the surface of bastnaesite was studied by simultaneous thermogravimetry and differential scanning calorimetry(TG-DSC),Zeta potential measurements,Fourier transform-infrared spectra(FT-IR)and X-ray photoelectron spectroscopy(XPS).These analysis results show that under suitable flotation conditions,H205 has an obvious adsorption phenomenon on the surface of bastnaesite.The adsorption involves electrostatic interactions and chemical interactions,namely H205 has a strong collecting ability of bastnaesite due to the synergism of electrostatic adsorption and chemical adsorption.This study systematically reveals the flotation behavior and adsorption mechanism of H205 on the surface of bastnaesite,and provides useful theoretical guidance for efficient flotation separation of bastnaesite.
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(No.52279097,No.51779264)Blue and Green Project of Jiangsu Province.
文摘Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.
文摘Type 2 diabetes(T2D)is an insidious disease associated with neural and vascular complications,acceleration of cardiovascular disease,changes in heart function,and premature death.In the newly released article of the Journal of Sport and Health Science,Liang et al.1 describe results from the UK Biobank data showing the benefits of moderate-to-vigorous intensity physical activity(MVPA)on reducing the risks for vascular events in 11,474 adults with T2D and prediabetes.
基金supported by the National Natural Science Foundation of China(Nos.52074228,52305420 and 51875470)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University,China(No.PF2024053)the Xi’an Beilin District Science and Technology Planning Project,China(No.GX2349).
文摘The pre-weld heat treatment was carried out to obtain different initial microstructures of the GH4169 superalloy,and then Linear Friction Welding(LFW)was performed.The effect of the pre-weld heat treatment on the microstructure evolution and mechanical properties of the joint was analyzed,and the joint electrochemical corrosion behavior as well as the hot corrosion behavior was studied.The results show that the joint hardness of Base Metal(BM)increases after pre-weld heat treatment,and the strengthening phasesγ′andγ″further precipitate.However,the precipitation phases dissolve significantly in the Weld Zone(WZ)due to the thermal process of LFW.The corrosion resistance in BM is reduced after the pre-weld heat treatment,while it is similar in WZ with a slight decrease.The surface morphology of the BM and WZ can be generally divided into a loose and porous matrix and a scattered oxide particle layer after hot corrosion.The joint cross section exhibits a Cr-depleted zone with the diffusion of Cr to form an oxide film.The corrosion product mainly consists of Fe_(2)O_(3)/Fe_(3)O_(4) as the outer layer and Cr_(2)O_(3) as the inner layer.