A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (...A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.展开更多
An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVD...An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVDR), the proposed algorithm jointly updates a transforming matrix and a reduced-rank filter. Each column of the transforming matrix is treated as an independent direction vector and updates the weight values of each dimension within a subspace. In addition, the direction vector rotation improves the performance of the algorithm by reducing the uncertainties due to the direction error. Simulation results show that the RJIO-DA algorithm has lower complexity and faster convergence than other conventional reduced-rank algorithms.展开更多
基金Project supported by the IRPA Secretariat, Ministry of Science,Technology and Environment of Malaysia (No. 04-02-02-0029) andthe Zamalah Scheme
文摘A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.
基金supported by the National Science&Technology Pillar Program(2013BAF07B03)Zhejiang Provincial Natural Science Foundation of China(LY13F010009)
文摘An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVDR), the proposed algorithm jointly updates a transforming matrix and a reduced-rank filter. Each column of the transforming matrix is treated as an independent direction vector and updates the weight values of each dimension within a subspace. In addition, the direction vector rotation improves the performance of the algorithm by reducing the uncertainties due to the direction error. Simulation results show that the RJIO-DA algorithm has lower complexity and faster convergence than other conventional reduced-rank algorithms.