Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In or...Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In order to overcome the need for estimated or filled up future unmeasured values in the online fault diagnosis, sufficiently utilize the finite information of faults, and enhance the diagnostic performance, an improved multi-model Fisher discriminant analysis is represented. The trait of the proposed method is that the training data sets are made of the current measured information and the past major discriminant information, and not only the current information or the whole batch data. An industrial typical multi-stage streptomycin fermentation process is used to test the performance of fault diagnosis of the proposed method.展开更多
Chemical batch processes have become significant in chemical manufacturing. In these processes, large numbers of chemical products are produced to satisfy human demands in daily life. Recently, economy globalization h...Chemical batch processes have become significant in chemical manufacturing. In these processes, large numbers of chemical products are produced to satisfy human demands in daily life. Recently, economy globalization has resulted, in growing worldwide competitions in tradi.tional chemical .process industry. In order to keep competitive in the global marketplace, each company must optimize its production management and set up a reactive system for market fluctuation. Scheduling is the core of production management in chemical processes. The goal of this paper is to review the recent developments in this challenging area. Classifications of batch scheduling problems and optimization methods are introduced. A comparison of six typical models is shown in a general benchmark example from the literature. Finally, challenges and applications in future research are discussed.展开更多
In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range pre...In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor.展开更多
Batch processes have been increasingly used in the production of low volume and high value added products. Consequently, optimization control in batch processes is crucial in order to derive the maximum benefit. In th...Batch processes have been increasingly used in the production of low volume and high value added products. Consequently, optimization control in batch processes is crucial in order to derive the maximum benefit. In this paper, a run-to-run product quality control based on iterative learning optimization control is developed. Moreover, a rigorous theorem is proposed and proven in this paper, which states that the tracking error under the optimal iterative learning control (ILC) law can converge to zero. In this paper, a typical nonlinear batch continuous stirred tank reactor (CSTR) is considered, and the results show that the performance of trajectory tracking is gradually improved by the ILC.展开更多
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w...Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.展开更多
An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong ...An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.展开更多
A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for produc...A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.展开更多
Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them conside...Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method.展开更多
Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable me...Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.展开更多
Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is pr...Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is proposed in this paper. Firstly, the batch-axis information and time-axis information are combined into one quadratic performance index. It implies the integration of ILC and MPC algorithm idea, which leads to superior tracking performance and better robustness against disturbance and uncertainty. To address the problem of the unknown optimal trajectory, both time-varying prediction horizon and end product quality control are employed. Moreover, an integrated 2 D just-in-time learning(JITL) model is used to improve the predictive accuracy. Furthermore, rigorous description and proof are presented to prove the convergence and tracking performance of the proposed MPC-ILC strategy. The simulation results show the effectiveness of the proposed method.展开更多
Nonlinear model predictive control(NMPC) is an appealing control technique for improving the performance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computati...Nonlinear model predictive control(NMPC) is an appealing control technique for improving the performance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computation. To facilitate the implementation of NMPC in batch processes, we propose a real-time updated model predictive control method based on state estimation. The method includes two strategies: a multiple model building strategy and a real-time model updated strategy. The multiple model building strategy is to produce a series of sim-plified models to reduce the on-line computational complexity of NMPC. The real-time model updated strategy is to update the simplified models to keep the accuracy of the models describing dynamic process behavior. The me-thod is validated with a typical batch reactor. Simulation studies show that the new method is efficient and robust with respect to model mismatch and changes in process parameters.展开更多
In this paper,a reinforced gradient-type iterative learning control pro file is proposed by making use of system matrices and a proper learning step to improve the tracking performance of batch processes disturbed by ...In this paper,a reinforced gradient-type iterative learning control pro file is proposed by making use of system matrices and a proper learning step to improve the tracking performance of batch processes disturbed by external Gaussian white noise.The robustness is analyzed and the range of the step is speci fied by means of statistical technique and matrix theory.Compared with the conventional one,the proposed algorithm is more ef ficient to resist external noise.Numerical simulations of an injection molding process illustrate that the proposed scheme is feasible and effective.展开更多
This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary erro...This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.展开更多
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ...Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.展开更多
As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that a...As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.展开更多
The increasing demand of goods,the high competitiveness in the global marketplace as well as the need to minimize the ecological footprint lead multipurpose batch process industries to seek ways to maximize their prod...The increasing demand of goods,the high competitiveness in the global marketplace as well as the need to minimize the ecological footprint lead multipurpose batch process industries to seek ways to maximize their productivity with a simultaneous reduction of raw materials and utility consumption and efficient use of processing units.Optimal scheduling of their processes can lead facilities towards this direction.Although a great number of mathematical models have been developed for such scheduling,they may still lead to large model sizes and computational time.In this work,we develop two novel mathematical models using the unit-specific eventbased modelling approach in which consumption and production tasks related to the same states are allowed to take place at the same event points.The computational results demonstrate that both proposed mathematical models reduce the number of event points required.The proposed unit-specific event-based model is the most efficient since it both requires a smaller number of event points and significantly less computational time in most cases especially for those examples which are computationally expensive from existing models.展开更多
There are usually no on-line product quality measurements in batch and semi-batch processes,which make the process control task very difficult.In this paper,a model for predicting the end-product quality from the avai...There are usually no on-line product quality measurements in batch and semi-batch processes,which make the process control task very difficult.In this paper,a model for predicting the end-product quality from the available on-line process variables at the early stage of a batch is developed using partial least squares(PLS)method.Furthermore,some available mid-course quality measurements are used to rectify the final prediction results.To deal with the problem that the process may change with time,recursive PLS(RPLS)algorithm is used to update the model based on the new batch data and the old model parameters after each batch.An application to a simulated batch MMA polymerization process demonstrates the effectiveness of the proposed method.展开更多
This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed...This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.展开更多
In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troubleso...In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.展开更多
The optimal scheduling of multi-product batch process is studied and a new mathematics model targeting the maximum profit is proposed, which can be solved by the modified genetic algorithm (MGA) with mixed coding (seq...The optimal scheduling of multi-product batch process is studied and a new mathematics model targeting the maximum profit is proposed, which can be solved by the modified genetic algorithm (MGA) with mixed coding (sequence coding and decimal coding) developed by us. In which, the partially matched cross over (PMX) and reverse mutation are used for the sequence coding, whereas the arithmetic crossover and heteropic mutation are used for the decimal coding. In addition, the relationship between production scale and production cost is analyzed and the maximum profit is always a trade-off of the production scale and production cost. Two examples are solved to demonstrate the effectiveness of the method.展开更多
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In order to overcome the need for estimated or filled up future unmeasured values in the online fault diagnosis, sufficiently utilize the finite information of faults, and enhance the diagnostic performance, an improved multi-model Fisher discriminant analysis is represented. The trait of the proposed method is that the training data sets are made of the current measured information and the past major discriminant information, and not only the current information or the whole batch data. An industrial typical multi-stage streptomycin fermentation process is used to test the performance of fault diagnosis of the proposed method.
基金Supported by the National Natural Science Foundation of China (20536020, 20876056).
文摘Chemical batch processes have become significant in chemical manufacturing. In these processes, large numbers of chemical products are produced to satisfy human demands in daily life. Recently, economy globalization has resulted, in growing worldwide competitions in tradi.tional chemical .process industry. In order to keep competitive in the global marketplace, each company must optimize its production management and set up a reactive system for market fluctuation. Scheduling is the core of production management in chemical processes. The goal of this paper is to review the recent developments in this challenging area. Classifications of batch scheduling problems and optimization methods are introduced. A comparison of six typical models is shown in a general benchmark example from the literature. Finally, challenges and applications in future research are discussed.
基金This work was supported by the UK EPSRC (GR/N13319, GR/R10875).
文摘In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor.
基金supported by the Science Foundation of Shanghai Municipal Education Commission (Grant No.09Y208)the Science Foundation of Science and Technology Commission of Shanghai Municipality (Grant Nos.08DZ2272400, 09DZ2273400)the "11th Five-Year Plan" 211 Construction Project of Shanghai University
文摘Batch processes have been increasingly used in the production of low volume and high value added products. Consequently, optimization control in batch processes is crucial in order to derive the maximum benefit. In this paper, a run-to-run product quality control based on iterative learning optimization control is developed. Moreover, a rigorous theorem is proposed and proven in this paper, which states that the tracking error under the optimal iterative learning control (ILC) law can converge to zero. In this paper, a typical nonlinear batch continuous stirred tank reactor (CSTR) is considered, and the results show that the performance of trajectory tracking is gradually improved by the ILC.
基金Supported in part by NSFC/RGC joint Research Scheme (N-HKUST639/09), the National Natural Science Foundation of China (61104058, 61273101), Guangzhou Scientific and Technological Project (2012J5100032), Nansha district independent innovation project (201103003), China Postdoctoral Science Foundation (2012M511367, 2012M511368), and Doctor Scientific Research Foundation of Liaoning Province (20121046).
文摘Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.
基金Supported by the National Creative Research Groups Science Foundation of China (60721062) and the National High Technology Research and Development Program of China (2007AA04Z162).
文摘An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.
基金Supported by the National Natural Science Foundation of China (60404012, 60674064), UK EPSRC (GR/N13319 and GR/R10875), the National High Technology Research and Development Program of China (2007AA04Z193), New Star of Science and Technology of Beijing City (2006A62), and IBM China Research Lab 2007 UR-Program.
文摘A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.
基金Supported by Guangzhou Nansha District Bureau of Economy & Trade, Science & Technology, Information, Project (201103003)the Fundamental Research Funds for the Central Universities (2012QNA5012)+1 种基金Project of Education Department of Zhejiang Province (Y201223159)Technology Foundation for Selected Overseas Chinese Scholar of Zhejiang Province (J20120561)
文摘Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method.
基金Supported by the Guangzhou Scientific and Technological Project (2012J5100032)Nansha District Independent Innovation Project (201103003)
文摘Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.
基金Supported by the National Natural Science Foundation of China(61374044)Shanghai Science Technology Commission(15510722100,16111106300)Shanghai Municipal Education Commission(14ZZ088)
文摘Considering the two-dimension(2 D) characteristic and the unknown optimal trajectory problem of the batch processes, an integrated model predictive control-iterative learning control(MPC-ILC) for batch processes is proposed in this paper. Firstly, the batch-axis information and time-axis information are combined into one quadratic performance index. It implies the integration of ILC and MPC algorithm idea, which leads to superior tracking performance and better robustness against disturbance and uncertainty. To address the problem of the unknown optimal trajectory, both time-varying prediction horizon and end product quality control are employed. Moreover, an integrated 2 D just-in-time learning(JITL) model is used to improve the predictive accuracy. Furthermore, rigorous description and proof are presented to prove the convergence and tracking performance of the proposed MPC-ILC strategy. The simulation results show the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(21136003,21176089)the National Science&Technology Support Plan(2012BAK13B02)+2 种基金the National Major Basic Research Program(2014CB744306)the Natural Science Foundation Team Project of Guangdong Province(S2011030001366)the Fundamental Research Funds for Central Universities(2013ZP0010)
文摘Nonlinear model predictive control(NMPC) is an appealing control technique for improving the performance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computation. To facilitate the implementation of NMPC in batch processes, we propose a real-time updated model predictive control method based on state estimation. The method includes two strategies: a multiple model building strategy and a real-time model updated strategy. The multiple model building strategy is to produce a series of sim-plified models to reduce the on-line computational complexity of NMPC. The real-time model updated strategy is to update the simplified models to keep the accuracy of the models describing dynamic process behavior. The me-thod is validated with a typical batch reactor. Simulation studies show that the new method is efficient and robust with respect to model mismatch and changes in process parameters.
基金Supported by National Natural Science Foundation of China(F010114-6097414061273135)
文摘In this paper,a reinforced gradient-type iterative learning control pro file is proposed by making use of system matrices and a proper learning step to improve the tracking performance of batch processes disturbed by external Gaussian white noise.The robustness is analyzed and the range of the step is speci fied by means of statistical technique and matrix theory.Compared with the conventional one,the proposed algorithm is more ef ficient to resist external noise.Numerical simulations of an injection molding process illustrate that the proposed scheme is feasible and effective.
基金Supported by the National Natural Science Foundation of China(61374044)Shanghai Science Technology Commission(12510709400)+1 种基金Shanghai Municipal Education Commission(14ZZ088)Shanghai Talent Development Plan
文摘This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.
文摘Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.
基金supported by the National Natural Science Foundation of China(Grant Number 61573264).
文摘As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.
基金Nikolaos Rakovitis would like to acknowledge financial support from the postgraduate award by The University of ManchesterLiping Zhang appreciates financial support from the National Natural Science Foundation of China(Grant No.51875420).
文摘The increasing demand of goods,the high competitiveness in the global marketplace as well as the need to minimize the ecological footprint lead multipurpose batch process industries to seek ways to maximize their productivity with a simultaneous reduction of raw materials and utility consumption and efficient use of processing units.Optimal scheduling of their processes can lead facilities towards this direction.Although a great number of mathematical models have been developed for such scheduling,they may still lead to large model sizes and computational time.In this work,we develop two novel mathematical models using the unit-specific eventbased modelling approach in which consumption and production tasks related to the same states are allowed to take place at the same event points.The computational results demonstrate that both proposed mathematical models reduce the number of event points required.The proposed unit-specific event-based model is the most efficient since it both requires a smaller number of event points and significantly less computational time in most cases especially for those examples which are computationally expensive from existing models.
基金support of the UK EPSRC(Grant GR/N13319)and thank Prof.C.Kiparissides of the Aristotle University of Thessaloniki,Greece,for providing the polymerization reactor model and the simulation program.
文摘There are usually no on-line product quality measurements in batch and semi-batch processes,which make the process control task very difficult.In this paper,a model for predicting the end-product quality from the available on-line process variables at the early stage of a batch is developed using partial least squares(PLS)method.Furthermore,some available mid-course quality measurements are used to rectify the final prediction results.To deal with the problem that the process may change with time,recursive PLS(RPLS)algorithm is used to update the model based on the new batch data and the old model parameters after each batch.An application to a simulated batch MMA polymerization process demonstrates the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(Grant Number 61573264).
文摘This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.
文摘In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.
文摘The optimal scheduling of multi-product batch process is studied and a new mathematics model targeting the maximum profit is proposed, which can be solved by the modified genetic algorithm (MGA) with mixed coding (sequence coding and decimal coding) developed by us. In which, the partially matched cross over (PMX) and reverse mutation are used for the sequence coding, whereas the arithmetic crossover and heteropic mutation are used for the decimal coding. In addition, the relationship between production scale and production cost is analyzed and the maximum profit is always a trade-off of the production scale and production cost. Two examples are solved to demonstrate the effectiveness of the method.