期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Construction Vectors for Visual Cryptographic Schemes
1
作者 FEI Ruchun 《Wuhan University Journal of Natural Sciences》 CAS 2014年第5期441-448,共8页
The concept of group construction vector and independent construction vector for visual cryptography is proposed, and the method based on construction vector is presented for con-structing basis matrices. The general ... The concept of group construction vector and independent construction vector for visual cryptography is proposed, and the method based on construction vector is presented for con-structing basis matrices. The general solutions to construction vectors and the general solutions to k out of n visual cryptographic schemes are obtained. Using the construction vectors, everyone can construct visual cryptographic schemes simply and efficaciously according to the formulas. The concept and the general solutions to construction vector present a good idea for researches on visual cryptographic schemes, including structural properties, the bound of pixel expansion and contrast, and optimal construction. 展开更多
关键词 visual cryptographic scheme basis matrix groupconstruction vector independent construction vector
原文传递
基于压缩感知的测量矩阵研究 被引量:6
2
作者 马庆涛 唐加山 《微型机与应用》 2013年第8期64-67,共4页
压缩感知打破了传统采样定理的限制,提供了一种从少量的非自适应线性测量值中就能恢复原始信号的方法。测量矩阵正是获取这些测量值的关键所在,寻求结构简单、性能稳定的测量矩阵一直是研究人员的目标。在介绍压缩感知测量矩阵的基础上... 压缩感知打破了传统采样定理的限制,提供了一种从少量的非自适应线性测量值中就能恢复原始信号的方法。测量矩阵正是获取这些测量值的关键所在,寻求结构简单、性能稳定的测量矩阵一直是研究人员的目标。在介绍压缩感知测量矩阵的基础上,提出了广义轮换矩阵的改进方法,结合正交基线性表示的思想,利用广义轮换构造的正交矩阵来生成新的测量矩阵。通过仿真实验,证明了新的测量矩阵具有较好的性能。 展开更多
关键词 压缩感知 稀疏信号 测量矩阵 广义轮换矩阵 正交基
在线阅读 下载PDF
Improved Non-negative Matrix Factorization Algorithm for Sparse Graph Regularization
3
作者 Caifeng Yang Tao Liu +2 位作者 Guifu Lu Zhenxin Wang Zhi Deng 《国际计算机前沿大会会议论文集》 2021年第1期221-232,共12页
Aiming at the low recognition accuracy of non-negative matrix factorization(NMF)in practical application,an improved spare graph NMF(New-SGNMF)is proposed in this paper.New-SGNMF makes full use of the inherent geometr... Aiming at the low recognition accuracy of non-negative matrix factorization(NMF)in practical application,an improved spare graph NMF(New-SGNMF)is proposed in this paper.New-SGNMF makes full use of the inherent geometric structure of image data to optimize the basis matrix in two steps.A threshold value s was first set to judge the threshold value of the decomposed base matrix to filter the redundant information in the data.Using L2 norm,sparse constraints were then implemented on the basis matrix,and integrated into the objective function to obtain the objective function of New-SGNMF.In addition,the derivation process of the algorithm and the convergence analysis of the algorithm were given.The experimental results on COIL20,PIE-pose09 and YaleB database show that compared with K-means,PCA,NMF and other algorithms,the proposed algorithm has higher accuracy and normalized mutual information. 展开更多
关键词 Image recognition Non-negative matrix factorization Graph regularization basis matrix Sparseness constraints
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部