Support vector machines and a Kalman-like observer are used for fault detection and isolation in a variable speed horizontalaxis wind turbine composed of three blades and a full converter. The support vector approach ...Support vector machines and a Kalman-like observer are used for fault detection and isolation in a variable speed horizontalaxis wind turbine composed of three blades and a full converter. The support vector approach is data-based and is therefore robust to process knowledge. It is based on structural risk minimization which enhances generalization even with small training data set and it allows for process nonlinearity by using flexible kernels. In this work, a radial basis function is used as the kernel. Different parts of the process are investigated including actuators and sensors faults. With duplicated sensors, sensor faults in blade pitch positions,generator and rotor speeds can be detected. Faults of type stuck measurements can be detected in 2 sampling periods. The detection time of offset/scaled measurements depends on the severity of the fault and on the process dynamics when the fault occurs. The converter torque actuator fault can be detected within 2 sampling periods. Faults in the actuators of the pitch systems represents a higher difficulty for fault detection which is due to the fact that such faults only affect the transitory state(which is very fast) but not the final stationary state. Therefore, two methods are considered and compared for fault detection and isolation of this fault: support vector machines and a Kalman-like observer. Advantages and disadvantages of each method are discussed. On one hand, support vector machines training of transitory states would require a big amount of data in different situations, but the fault detection and isolation results are robust to variations in the input/operating point. On the other hand, the observer is model-based, and therefore does not require training, and it allows identification of the fault level, which is interesting for fault reconfiguration. But the observability of the system is ensured under specific conditions, related to the dynamics of the inputs and outputs. The whole fault detection and isolation scheme is evaluated using a wind turbine benchmark with a real sequence of wind speed.展开更多
Ⅰ. INTRODUCTION MULTILEVEL inverters are increasingly being used in high-power medium voltage applications due to their superior performance compared to two-level inverters, such as lower common-mode voltage, lower d...Ⅰ. INTRODUCTION MULTILEVEL inverters are increasingly being used in high-power medium voltage applications due to their superior performance compared to two-level inverters, such as lower common-mode voltage, lower dv/dt, lower harmonics in output voltage and current, and reduced voltage on the power switches.展开更多
This paper presents a new system identification approach using vector space base functions, and proposes two network structures based on Gamma sequence and Laguerre sequence. After analyzing and comparing these struct...This paper presents a new system identification approach using vector space base functions, and proposes two network structures based on Gamma sequence and Laguerre sequence. After analyzing and comparing these structures in detail, some simulation results to demonstrate the conclusions are given.展开更多
Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the...Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the samples which are sparse in the mode.To solve this issue,a new approach called density-based support vector data description( DBSVDD) is proposed. In this article,an algorithm using Gaussian mixture model( GMM) with the DBSVDD technique is proposed for process monitoring. The GMM method is used to obtain the center of each mode and determine the number of the modes. Considering the complexity of the data distribution and discrete samples in monitoring process,the DBSVDD is utilized for process monitoring. Finally,the validity and effectiveness of the DBSVDD method are illustrated through the Tennessee Eastman( TE) process.展开更多
In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, ...In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, for monitoring the process mean vector. Methods to obtain the design parameters and operations of these control charts are discussed. Performances of the proposed charts are compared with some existing control charts. It is verified that, the proposed charts give a significant reduction in the out-of-control “Average Time to Signal” (ATS) in the zero state, as well in the steady state compared to the Hotelling’s T2 and the synthetic T2 control charts.展开更多
This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and ...This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and 2) matching phase. In the training phase, a corner detection algorithm is used to extract the corners. These corners are then used to build the pyramid images. In the matching phase, the corners are obtained using the same corner detection algorithm. The similarity measure is then determined by the differences of gradient vector between the corners obtained in the template image and the inspection image, respectively. A parabolic function is further applied to evaluate the geometric relationship between the template and the inspection images. Results show that the corner-based template matching outperforms the original edge-based template matching in efficiency, and both of them are robust against non-liner light changes. The accuracy and precision of the corner-based image alignment are competitive to that of edge-based image alignment under the same environment. In practice, the proposed algorithm demonstrates its precision, efficiency and robustness in image alignment for real world applications.展开更多
The size and performance of a System LSI depend heavily on the architecture which is chosen. As a result, the architecture design phase is one of the most important steps in the System LSI development process and is c...The size and performance of a System LSI depend heavily on the architecture which is chosen. As a result, the architecture design phase is one of the most important steps in the System LSI development process and is critical to the commercial success of a device. In this paper, we propose a C-based variable length and vector pipeline (VVP) architecture design methodology and apply it to the design of the output probability computation circuit for a speech recognition system. VVP processing accelerated by loop optimization, memory access methods, and application-specific cir- cuit design was implemented to calculate the Hidden Markov Model (HMM) output probability at high speed and its performance is evaluated. It is shown that designers can explore a wide range of design choices and generate complex circuits in a short time by using a C-based pipeline architecture design method.展开更多
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici...Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.展开更多
Content-based filtering E-commerce recommender system was discussed fully in this paper. Users' unique features can be explored by means of vector space model firstly. Then based on the qualitative value of products ...Content-based filtering E-commerce recommender system was discussed fully in this paper. Users' unique features can be explored by means of vector space model firstly. Then based on the qualitative value of products informa tion, the recommender lists were obtained. Since the system can adapt to the users' feedback automatically, its performance were enhanced comprehensively. Finally the evaluation of the system and the experimental results were presented.展开更多
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper...The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.展开更多
In software engineering, a scenario describes an anticipated usage of a software system. As scenarios are useful to understand the requirements and functionalities of a software system, the scenario-based analysis is ...In software engineering, a scenario describes an anticipated usage of a software system. As scenarios are useful to understand the requirements and functionalities of a software system, the scenario-based analysis is widely used in various tasks, especially in the design stage of software architectures. Although researchers have proposed various scenario-based approaches to analyse software architecture, there are still limitations in this research field, and a key limitation is that scenarios are typically not formally defined and thus may contain ambiguities. As these ambiguities may lead to defects, it is desirable to reduce them as many as possible. In order to reduce ambiguity in scenario-based software architecture analysis, this paper introduces a creative computing approach to scenario-based software requirements analysis. Our work expands this idea in three directions. Firstly, we extend an architecture description language(ADL)-based language – Breeze/ADL to model the software architecture. Secondly, we use a creative rule – combinational rule(CR) to combine the vector clock algorithm for reducing the ambiguities in modelling scenarios. Then, another creative rule – transformational rule(TR) is employed to help to transform our Breeze/ADL model to a popular model – unified modelling language(UML) model. We implement our approach as a plugin of Breeze, and illustrate a running example of modelling a poetry to music system in our case study.Our results show the proposed creative approach is able to reduce ambiguities of the software architecture in practice.展开更多
Key techniques to improve the quality of developing Web-based engineering drawing CAI software are discussed and some experience in applying commercial tools for generating vector drawing, concise representation of 3D...Key techniques to improve the quality of developing Web-based engineering drawing CAI software are discussed and some experience in applying commercial tools for generating vector drawing, concise representation of 3D solids, real-time interactive animation, data management etc. is illustrated. A Web-based Engineering Drawing CAI software 'Solid Projection' has been implemented by using these techniques.展开更多
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an...Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.展开更多
In this paper, we extend our previous study of addressing the important problem of automatically identifying question and non-question segments in Arabic monologues using prosodic features. We propose here two novel c...In this paper, we extend our previous study of addressing the important problem of automatically identifying question and non-question segments in Arabic monologues using prosodic features. We propose here two novel classification approaches to this problem: one based on the use of the powerful type-2 fuzzy logic systems (type-2 FLS) and the other on the use of the discriminative sensitivity-based linear learning method (SBLLM). The use of prosodic features has been used in a plethora of practical applications, including speech-related applications, such as speaker and word recognition, emotion and accent identification, topic and sentence segmentation, and text-to-speech applications. In this paper, we continue to specifically focus on the Arabic language, as other languages have received a lot of attention in this regard. Moreover, we aim to improve the performance of our previously-used techniques, of which the support vector machine (SVM) method was the best performing, by applying the two above-mentioned powerful classification approaches. The recorded continuous speech is first segmented into sentences using both energy and time duration parameters. The prosodic features are then extracted from each sentence and fed into each of the two proposed classifiers so as to classify each sentence as a Question or a Non-Question sentence. Our extensive simulation work, based on a moderately-sized database, showed the two proposed classifiers outperform SVM in all of the experiments carried out, with the type-2 FLS classifier consistently exhibiting the best performance, because of its ability to handle all forms of uncertainties.展开更多
Vehicle tracking plays a crucial role in intelligent transportation, autonomous driving, and video surveillance. However, challenges such as occlusion, multi-target interference, and nonlinear motion in dynamic scenar...Vehicle tracking plays a crucial role in intelligent transportation, autonomous driving, and video surveillance. However, challenges such as occlusion, multi-target interference, and nonlinear motion in dynamic scenarios make tracking accuracy and stability a focus of ongoing research. This paper proposes an integrated method combining YOLOv8 object detection with adaptive Kalman filtering. The approach employs a support vector machine (SVM) to dynamically select the optimal filter (including standard Kalman filter, extended Kalman filter, and unscented Kalman filter), enhancing the system’s adaptability to different motion patterns. Additionally, an error feedback mechanism is incorporated to dynamically adjust filter parameters, further improving responsiveness to sudden events. Experimental results on the KITTI and UA-DETRAC datasets demonstrate that the proposed method significantly improves detection accuracy (mAP@0.5 increased by approximately 3%), tracking accuracy (MOTA improved by 5%), and system robustness, providing an efficient solution for vehicle tracking in complex environments.展开更多
The regularities of the solid solutions between the scheelite-type compounds and rare earth molybdates or tungstates were investigated by the atomic parameter-support vector machine method and the intelligent database...The regularities of the solid solutions between the scheelite-type compounds and rare earth molybdates or tungstates were investigated by the atomic parameter-support vector machine method and the intelligent database of phase diagrams of molten salt systems. The crystal structure of scheelite-type compounds having M^1M^′Ⅲ (XO4)2(X = Mo, W) as common formula and the formability of the continuous solid solution between these compounds and rare earth molybdates or tungstates were also investigated. Besides, the cell constants of these compounds can be calculated by some semi-empirical equations. Based on the obtained relationships, the results of computerized prediction of the solid solubility of T1Pr (MoO4)2-Pr2 (MoO4)3 system have good agreement with experimental results.展开更多
AIM:To present a content-based image retrieval(CBIR) system that supports the classification of breast tissue density and can be used in the processing chain to adapt parameters for lesion segmentation and classificat...AIM:To present a content-based image retrieval(CBIR) system that supports the classification of breast tissue density and can be used in the processing chain to adapt parameters for lesion segmentation and classification.METHODS:Breast density is characterized by image texture using singular value decomposition(SVD) and histograms.Pattern similarity is computed by a support vector machine(SVM) to separate the four BI-RADS tissue categories.The crucial number of remaining singular values is varied(SVD),and linear,radial,and polynomial kernels are investigated(SVM).The system is supported by a large reference database for training and evaluation.Experiments are based on 5-fold cross validation.RESULTS:Adopted from DDSM,MIAS,LLNL,and RWTH datasets,the reference database is composed of over 10000 various mammograms with unified and reliable ground truth.An average precision of 82.14% is obtained using 25 singular values(SVD),polynomial kernel and the one-against-one(SVM).CONCLUSION:Breast density characterization using SVD allied with SVM for image retrieval enable the development of a CBIR system that can effectively aid radiologists in their diagnosis.展开更多
文摘Support vector machines and a Kalman-like observer are used for fault detection and isolation in a variable speed horizontalaxis wind turbine composed of three blades and a full converter. The support vector approach is data-based and is therefore robust to process knowledge. It is based on structural risk minimization which enhances generalization even with small training data set and it allows for process nonlinearity by using flexible kernels. In this work, a radial basis function is used as the kernel. Different parts of the process are investigated including actuators and sensors faults. With duplicated sensors, sensor faults in blade pitch positions,generator and rotor speeds can be detected. Faults of type stuck measurements can be detected in 2 sampling periods. The detection time of offset/scaled measurements depends on the severity of the fault and on the process dynamics when the fault occurs. The converter torque actuator fault can be detected within 2 sampling periods. Faults in the actuators of the pitch systems represents a higher difficulty for fault detection which is due to the fact that such faults only affect the transitory state(which is very fast) but not the final stationary state. Therefore, two methods are considered and compared for fault detection and isolation of this fault: support vector machines and a Kalman-like observer. Advantages and disadvantages of each method are discussed. On one hand, support vector machines training of transitory states would require a big amount of data in different situations, but the fault detection and isolation results are robust to variations in the input/operating point. On the other hand, the observer is model-based, and therefore does not require training, and it allows identification of the fault level, which is interesting for fault reconfiguration. But the observability of the system is ensured under specific conditions, related to the dynamics of the inputs and outputs. The whole fault detection and isolation scheme is evaluated using a wind turbine benchmark with a real sequence of wind speed.
文摘Ⅰ. INTRODUCTION MULTILEVEL inverters are increasingly being used in high-power medium voltage applications due to their superior performance compared to two-level inverters, such as lower common-mode voltage, lower dv/dt, lower harmonics in output voltage and current, and reduced voltage on the power switches.
基金National Natural Science FundsNatural Science Funds of Jiangsu Province
文摘This paper presents a new system identification approach using vector space base functions, and proposes two network structures based on Gamma sequence and Laguerre sequence. After analyzing and comparing these structures in detail, some simulation results to demonstrate the conclusions are given.
基金National Natural Science Foundation of China(No.61374140)the Youth Foundation of National Natural Science Foundation of China(No.61403072)
文摘Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the samples which are sparse in the mode.To solve this issue,a new approach called density-based support vector data description( DBSVDD) is proposed. In this article,an algorithm using Gaussian mixture model( GMM) with the DBSVDD technique is proposed for process monitoring. The GMM method is used to obtain the center of each mode and determine the number of the modes. Considering the complexity of the data distribution and discrete samples in monitoring process,the DBSVDD is utilized for process monitoring. Finally,the validity and effectiveness of the DBSVDD method are illustrated through the Tennessee Eastman( TE) process.
文摘In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, for monitoring the process mean vector. Methods to obtain the design parameters and operations of these control charts are discussed. Performances of the proposed charts are compared with some existing control charts. It is verified that, the proposed charts give a significant reduction in the out-of-control “Average Time to Signal” (ATS) in the zero state, as well in the steady state compared to the Hotelling’s T2 and the synthetic T2 control charts.
文摘This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and 2) matching phase. In the training phase, a corner detection algorithm is used to extract the corners. These corners are then used to build the pyramid images. In the matching phase, the corners are obtained using the same corner detection algorithm. The similarity measure is then determined by the differences of gradient vector between the corners obtained in the template image and the inspection image, respectively. A parabolic function is further applied to evaluate the geometric relationship between the template and the inspection images. Results show that the corner-based template matching outperforms the original edge-based template matching in efficiency, and both of them are robust against non-liner light changes. The accuracy and precision of the corner-based image alignment are competitive to that of edge-based image alignment under the same environment. In practice, the proposed algorithm demonstrates its precision, efficiency and robustness in image alignment for real world applications.
文摘The size and performance of a System LSI depend heavily on the architecture which is chosen. As a result, the architecture design phase is one of the most important steps in the System LSI development process and is critical to the commercial success of a device. In this paper, we propose a C-based variable length and vector pipeline (VVP) architecture design methodology and apply it to the design of the output probability computation circuit for a speech recognition system. VVP processing accelerated by loop optimization, memory access methods, and application-specific cir- cuit design was implemented to calculate the Hidden Markov Model (HMM) output probability at high speed and its performance is evaluated. It is shown that designers can explore a wide range of design choices and generate complex circuits in a short time by using a C-based pipeline architecture design method.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant 51490662)the Funds for Distinguished Young Scientists of Hunan Province (Grant 14JJ1016)+1 种基金the State Key Program of the National Science Foundation of China (11232004)the Heavy-duty Tractor Intelligent Manufacturing Technology Research and System Development (Grant 2016YFD0701105)
文摘Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.
基金Supported bythe Hunan Teaching Reformand Re-search Project of Colleges and Universities (2003-B72) the HunanBoard of Review on Philosophic and Social Scientific Pay-off Project(0406035) the Hunan Soft Science Research Project(04ZH6005)
文摘Content-based filtering E-commerce recommender system was discussed fully in this paper. Users' unique features can be explored by means of vector space model firstly. Then based on the qualitative value of products informa tion, the recommender lists were obtained. Since the system can adapt to the users' feedback automatically, its performance were enhanced comprehensively. Finally the evaluation of the system and the experimental results were presented.
文摘The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.
基金partially supported by the Japam Society for the Promotion of Science (JSPS) KAKENHI (Nos. 25420232 and 16K06203)
文摘In software engineering, a scenario describes an anticipated usage of a software system. As scenarios are useful to understand the requirements and functionalities of a software system, the scenario-based analysis is widely used in various tasks, especially in the design stage of software architectures. Although researchers have proposed various scenario-based approaches to analyse software architecture, there are still limitations in this research field, and a key limitation is that scenarios are typically not formally defined and thus may contain ambiguities. As these ambiguities may lead to defects, it is desirable to reduce them as many as possible. In order to reduce ambiguity in scenario-based software architecture analysis, this paper introduces a creative computing approach to scenario-based software requirements analysis. Our work expands this idea in three directions. Firstly, we extend an architecture description language(ADL)-based language – Breeze/ADL to model the software architecture. Secondly, we use a creative rule – combinational rule(CR) to combine the vector clock algorithm for reducing the ambiguities in modelling scenarios. Then, another creative rule – transformational rule(TR) is employed to help to transform our Breeze/ADL model to a popular model – unified modelling language(UML) model. We implement our approach as a plugin of Breeze, and illustrate a running example of modelling a poetry to music system in our case study.Our results show the proposed creative approach is able to reduce ambiguities of the software architecture in practice.
文摘Key techniques to improve the quality of developing Web-based engineering drawing CAI software are discussed and some experience in applying commercial tools for generating vector drawing, concise representation of 3D solids, real-time interactive animation, data management etc. is illustrated. A Web-based Engineering Drawing CAI software 'Solid Projection' has been implemented by using these techniques.
基金supported by the National Natural Science Foundation of China(Grant No.51709021)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016491111)
文摘Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.
文摘In this paper, we extend our previous study of addressing the important problem of automatically identifying question and non-question segments in Arabic monologues using prosodic features. We propose here two novel classification approaches to this problem: one based on the use of the powerful type-2 fuzzy logic systems (type-2 FLS) and the other on the use of the discriminative sensitivity-based linear learning method (SBLLM). The use of prosodic features has been used in a plethora of practical applications, including speech-related applications, such as speaker and word recognition, emotion and accent identification, topic and sentence segmentation, and text-to-speech applications. In this paper, we continue to specifically focus on the Arabic language, as other languages have received a lot of attention in this regard. Moreover, we aim to improve the performance of our previously-used techniques, of which the support vector machine (SVM) method was the best performing, by applying the two above-mentioned powerful classification approaches. The recorded continuous speech is first segmented into sentences using both energy and time duration parameters. The prosodic features are then extracted from each sentence and fed into each of the two proposed classifiers so as to classify each sentence as a Question or a Non-Question sentence. Our extensive simulation work, based on a moderately-sized database, showed the two proposed classifiers outperform SVM in all of the experiments carried out, with the type-2 FLS classifier consistently exhibiting the best performance, because of its ability to handle all forms of uncertainties.
文摘Vehicle tracking plays a crucial role in intelligent transportation, autonomous driving, and video surveillance. However, challenges such as occlusion, multi-target interference, and nonlinear motion in dynamic scenarios make tracking accuracy and stability a focus of ongoing research. This paper proposes an integrated method combining YOLOv8 object detection with adaptive Kalman filtering. The approach employs a support vector machine (SVM) to dynamically select the optimal filter (including standard Kalman filter, extended Kalman filter, and unscented Kalman filter), enhancing the system’s adaptability to different motion patterns. Additionally, an error feedback mechanism is incorporated to dynamically adjust filter parameters, further improving responsiveness to sudden events. Experimental results on the KITTI and UA-DETRAC datasets demonstrate that the proposed method significantly improves detection accuracy (mAP@0.5 increased by approximately 3%), tracking accuracy (MOTA improved by 5%), and system robustness, providing an efficient solution for vehicle tracking in complex environments.
文摘The regularities of the solid solutions between the scheelite-type compounds and rare earth molybdates or tungstates were investigated by the atomic parameter-support vector machine method and the intelligent database of phase diagrams of molten salt systems. The crystal structure of scheelite-type compounds having M^1M^′Ⅲ (XO4)2(X = Mo, W) as common formula and the formability of the continuous solid solution between these compounds and rare earth molybdates or tungstates were also investigated. Besides, the cell constants of these compounds can be calculated by some semi-empirical equations. Based on the obtained relationships, the results of computerized prediction of the solid solubility of T1Pr (MoO4)2-Pr2 (MoO4)3 system have good agreement with experimental results.
基金Supported by CNPq-Brazil,Grants 306193/2007-8,471518/ 2007-7,307373/2006-1 and 484893/2007-6,by FAPEMIG,Grant PPM 347/08,and by CAPESThe IRMA project is funded by the German Research Foundation(DFG),Le 1108/4 and Le 1108/9
文摘AIM:To present a content-based image retrieval(CBIR) system that supports the classification of breast tissue density and can be used in the processing chain to adapt parameters for lesion segmentation and classification.METHODS:Breast density is characterized by image texture using singular value decomposition(SVD) and histograms.Pattern similarity is computed by a support vector machine(SVM) to separate the four BI-RADS tissue categories.The crucial number of remaining singular values is varied(SVD),and linear,radial,and polynomial kernels are investigated(SVM).The system is supported by a large reference database for training and evaluation.Experiments are based on 5-fold cross validation.RESULTS:Adopted from DDSM,MIAS,LLNL,and RWTH datasets,the reference database is composed of over 10000 various mammograms with unified and reliable ground truth.An average precision of 82.14% is obtained using 25 singular values(SVD),polynomial kernel and the one-against-one(SVM).CONCLUSION:Breast density characterization using SVD allied with SVM for image retrieval enable the development of a CBIR system that can effectively aid radiologists in their diagnosis.