To obtain a stable amplified spontaneous emission(ASE) source for complex environment applications, we design an ASE source and study the output power and spectral characteristics under different ambient temperature...To obtain a stable amplified spontaneous emission(ASE) source for complex environment applications, we design an ASE source and study the output power and spectral characteristics under different ambient temperatures.We optimize the structure of the ASE source to flatten the ASE spectrum, and study the output characteristics in terms of output power and optical spectrum under different pump powers. Then the performance of the ASE source is investigated in the temperature range from-18.9°C to 50°C. A stable-power and flat-spectrum ASE source can be obtained by structural optimization and pump control.展开更多
Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the ...Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.展开更多
Objective Any natural system is constantly exchanging material, energy and information with the environment, and all tkese processes follow the basic law of thermodynamics, with no exception of groundwater recharge a...Objective Any natural system is constantly exchanging material, energy and information with the environment, and all tkese processes follow the basic law of thermodynamics, with no exception of groundwater recharge and discharge process. On the basis of the principle of the first law of thermodynamics, the reverse geochemical simulation method is widely used in the study of groundwater recharge, runoff and drainage process. However, some studies only consider the material conservation in theprocess, but ignore the probability of the transformation.展开更多
A newly developed energy source basein China,Huaibei City,is located inthe northern part of Anhui Province,under the direct control of the provincialgovernment.Under its jurisdiction,there arethree districts and one c...A newly developed energy source basein China,Huaibei City,is located inthe northern part of Anhui Province,under the direct control of the provincialgovernment.Under its jurisdiction,there arethree districts and one county,covering atotal area of 2725 sq km and with a populationof 1.8 million. The city boasts unique mineralresources.A total of 13 minerals have beensurveyed,including coal,iron and kaoline.The reserves of coal,the richest of all,areestimated at about 10 billion tons and theprospective reserves 35 billion tons.Basedon its coal resources,the city has set up 24pairs of large and modern mines with anannual production capacity of 20 milliontons,ranking fifth in the country.The展开更多
An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic pro...An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic prop- agation experiment is carried out in a slope environment. The pulse signal is received by the vertical line array, and the depth structure can be obtained. For the experimental data, the depth structures of pulse waveforms are different, which depends on the source range. For a source with unknown range, the depth structure of pulse waveform can be first obtained from the experimental data. Next, the depth structures of pulse waveforms in dif- ferent ranges are numerically calculated. After the process of correlating the experimental and simulated signals, the range corresponding to the maximum value of the correlation coefficient is the estimated source range. For the explosive sources in the experiment with two depths, the mean relative errors of range estimation are both less than 7%.展开更多
Energy consumption is a crucial design concern in Mobile Ad hoc NETworks (MANETs) since nodes are powered by batteries with limited energy, whereas Dynamic Source Routing (DSR) protocol does not take the energy limita...Energy consumption is a crucial design concern in Mobile Ad hoc NETworks (MANETs) since nodes are powered by batteries with limited energy, whereas Dynamic Source Routing (DSR) protocol does not take the energy limitation of MANET nodes into account. This paper proposes an energy-saving routing algorithm based on DSR: Power Aware Routing protocol based on DSR (PAR-DSR). The design objective of PAR-DSR is to select energy-efficient paths. The main features of PAR-DSR are: (1) Nodes use the Signal Attenuation Rate (SAR) to conduct power control operations; (2) Minimum path cost as metric to balance the traffic and energy consumption of wireless nodes. The simulation results show that PAR-DSR can greatly reduce the energy consumption of MANET nodes. The average node lifetime of PAR-DSR is 50%-77% longer than that of DSR.展开更多
Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system...Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.展开更多
Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarci...Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarcity,which frequently impedes the generation of accurate and informative landslide susceptibility maps.Addressing this challenge,this study compiled a nationwide dataset and developed a transfer learning-based model to evaluate landslide susceptibility in the Chongqing region specifically.Notably,the proposed model,calibrated with the warmup-cosine annealing(WCA)learning rate strategy,demonstrated remarkable predictive capabilities,particularly in scenarios marked by data limitations and when training data were normalized using parameters from the source region.This is evidenced by the area under the receiver operating characteristic curve(AUC)values,which exhibited significant improvements of 51.00%,24.40%and 2.15%,respectively,compared to a deep learning model,in contexts where only 1%,5%and 10%of data from the target region were used for retraining.Simultaneously,there were reductions in loss of 16.12%,27.61%and 15.44%,respectively,in these instances.展开更多
Traditional protection methods are not suitable for hybrid(cable and overhead)transmission lines in voltage source converter based high-voltage direct current(VSC-HVDC)systems.Accordingly,this paper presents the robus...Traditional protection methods are not suitable for hybrid(cable and overhead)transmission lines in voltage source converter based high-voltage direct current(VSC-HVDC)systems.Accordingly,this paper presents the robust fault detection,classification,and location based on the empirical wavelet transform-Teager energy operator(EWT-TEO)and artificial neural network(ANN)for hybrid transmission lines in VSC-HVDC systems.The operational scheme of the proposed protection method consists of two loops①an EWT-TEO based feature extraction loop,②and an ANN-based fault detection,classification,and location loop.Under the proposed protection method,the voltage and current signals are decomposed into several sub-passbands with low and high frequencies using the empirical wavelet transform(EWT)method.The energy content extracted by the EWT is fed into the ANN for fault detection,classification,and location.Various fault cases,including the high-impedance fault(HIF)as well as noises,are performed to train the ANN with two hidden layers.The test system and signal decomposition are conducted by PSCAD/EMTDC and MATLAB,respectively.The performance of the proposed protection method is compared with that of the traditional non-pilot traveling wave(TW)based protection method.The results confirm the high accuracy of the proposed protection method for hybrid transmission lines in VSC-HVDC systems,where a mean percentage error of approximately 0.1%is achieved.展开更多
As a new generation of direct current(DC)transmission technology,voltage sourced converter(VSC)based high voltage direct current(HVDC)has been widely developed and applied all over the world.China has also carried out...As a new generation of direct current(DC)transmission technology,voltage sourced converter(VSC)based high voltage direct current(HVDC)has been widely developed and applied all over the world.China has also carried out a deep technical research and engineering application in this area,and at present,it has been stepped into a fast growing period.This paper gives a general review over China’s VSC based HVDC in terms of engineering technology,application and future development.It comprehensively analyzes the technical difficulties and future development orientation on the aspects of the main configurations of VSC based HVDC system,topological structures of converters,control and protection technologies,flexible DC cables,converter valve tests,etc.It introduces the applicable fields and current status of China’s VSC based HVDC projects,and analyzes the application trends of VSC based HVDC projects both in China and all over the world according to the development characteristics and demands of future power grids.展开更多
A large number of genes related to source, sink,and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This pe...A large number of genes related to source, sink,and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This perspective paper aims to examine the reasons behind such a phenomenon and propose a strategy to resolve this situation. Specifically, we first systematically survey the currently cloned genes related to source, sink, and flow;then we discuss three factors hindering effective application of these identified genes, which include the lack of effective methods to identify limiting or critical steps in a signaling network, the misplacement of emphasis on properties, at the leaf, instead of the whole canopy level,and the non-linear complex interaction between source,sink, and flow. Finally, we propose the development of systems models of source, sink and flow, together with a detailed simulation of interactions between them and their surrounding environments, to guide effective use of the identified elements in modern rice breeding. These systems models will contribute directly to the definition of crop ideotype and also identification of critical features and parameters that limit the yield potential in current cultivars.展开更多
The theory of passive localization for underwater sources based on acoustic ray channel modeling is discussed. The principles of channel modeling in Ray-theory, determination of eigenrays which connect source and rece...The theory of passive localization for underwater sources based on acoustic ray channel modeling is discussed. The principles of channel modeling in Ray-theory, determination of eigenrays which connect source and receiver, analysis of DOA arriving structure and time delay spectrum arriving structure, their relationship to source location are given in the paper. Source location is estimated by matching measured DOA and TDS to their calculated counterparts. The method of Ray-theory based passive localization features its simplicity, less calculation, short array aperture and robust performance to environment parameters, as compared with those methods based on Normal Mode theory.展开更多
We report a demonstration of a fast wavelength tunable source (TWS) based on the laser diode array coupled to the arrayed waveguide grating (AWG) multiplexer. The switching and optical characteristics of TWS make it a...We report a demonstration of a fast wavelength tunable source (TWS) based on the laser diode array coupled to the arrayed waveguide grating (AWG) multiplexer. The switching and optical characteristics of TWS make it a candidate for implementing the wavelength-division space switch fabric for an optical packet/burst switching.展开更多
The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT...The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT). We propose a region stepwise reconstruction method in CW-DOT scheme for reconstructing the background absorption and reduced scattering coefficients of the two-layered slab sample with the known geometric information. According to the relation between the thickness of the top layer and source– detector separation, the conventional measurement data are divided into two groups and are employed to reconstruct the top and bottom background optical properties, respectively. The numerical simulation results demonstrate that the proposed method can reconstruct the background optical properties of two-layered slab sample effectively. The region-of-interest reconstruction results are better than those of the conventional simultaneous reconstruction method.展开更多
Fluctuating polarization state-of-light in the optical loop is an important factor that seriously influences the output performance of a multi-carrier source based on re-circulating frequency shifter (RFS). The reas...Fluctuating polarization state-of-light in the optical loop is an important factor that seriously influences the output performance of a multi-carrier source based on re-circulating frequency shifter (RFS). The reason for output spectrum instability when no polarization controller (PC) is present in the loop is analyzed theoretically. Numerical simulations for the output spectra of the multi-carrier source with and without PC are conducted, and the trajectories of the several frequency components polarization states on the Poincare sphere with and without PC are compared. The results show that the performance of multi-carrier source based on a RFS can be improved effectively by adjusting the PC in the configuration properly.展开更多
Applying laser-speckle techniques in material sciences as well as in methods to characterize surface con- ditions of specimen has become the method of choice, especially if a non-contacting principle is sought. This i...Applying laser-speckle techniques in material sciences as well as in methods to characterize surface con- ditions of specimen has become the method of choice, especially if a non-contacting principle is sought. This is almost always the case for specimen that are small in at least one dimension as for example in the materiM testing of foils, fibres, or micromaterials and certainly also if elevated test-temperatures are preventing standard gauges. This letter discusses in some detail sources of error that are quite often over- looked or not even considered as significant at all, but still carry the potential to introduce uncertainties well above the system design specifications.展开更多
An improved localization method consisting of "filtering-time delay estimationhyperbolic localization" is proposed. Combining the empirical mode decomposition(EMD)and time delay estimation method based on generali...An improved localization method consisting of "filtering-time delay estimationhyperbolic localization" is proposed. Combining the empirical mode decomposition(EMD)and time delay estimation method based on generalized average magnitude difference function,the original signals are decomposed into intrinsic mode function(IMF) components. The energy distribution criterion and spectrum consistency criterion are used to select the IMFs, which can represent the physical characteristics of the source signal. Several sets of signals are applied to estimate the time delay, and then a vector matching criterion is proposed to select the correct time delay estimation. Considering the hydrophones location, a shell model is established and projected to a plane according to the quadrant before the hyperbolic localization. Results of mooring and sailing tests show that the proposed method improves the localization accuracy,and reduces the error caused by time delay estimation.展开更多
Under weak grid conditions,grid impedance is coupled with a control system for voltage source converter based high-voltage direct current(VSC-HVDC)systems,resulting in decreased synchronization stability.Unfortunately...Under weak grid conditions,grid impedance is coupled with a control system for voltage source converter based high-voltage direct current(VSC-HVDC)systems,resulting in decreased synchronization stability.Unfortunately,most studies are based on the assumption that impedance ratio(R/X)is sufficiently small to ignore the effects of grid impedance.In this study,we establish a dynamic coupling model that includes grid impedance and control loops,revealing the influence mechanism of R/X on synchronization stability from a physical perspective.We also quantify the stability range of R/X in the static analysis model and introduce a sensitivity factor to measure its effect on voltage stability.Additionally,we utilize a dynamic analysis model to evaluate power angle convergence,proposing a corresponding stability criterion.We then present a method of synchronous voltage reconstruction aimed at enhancing the grid strength.Theoretical analysis shows that this method can effectively mitigate the effects of coupling between grid impedance and the controller under weak grid conditions,ensuring stable operation even under extremely weak grid conditions.Experiments validate the accuracy and effectiveness of the analysis and method.展开更多
Lightning is one of the most common transient interferences on overhead transmission lines of high-voltage direct current(HVDC)systems.Accurate and effective recognition of faults and disturbances caused by lightning ...Lightning is one of the most common transient interferences on overhead transmission lines of high-voltage direct current(HVDC)systems.Accurate and effective recognition of faults and disturbances caused by lightning strokes is crucial in transient protections such as traveling wave protection.Traditional recognition methods which adopt feature extraction and classification models rely heavily on the performance of signal processing and practical operation experiences.Misjudgments occur due to the poor generalization performance of recognition models.To improve the recognition rates and reliability of transient protection,this paper proposes a transient recognition method based on the deep belief network.The normalized line-mode components of transient currents on HVDC transmission lines are analyzed by a deep belief network which is properly designed.The feature learning process of the deep belief network can discover the inherent characteristics and improve recognition accuracy.Simulations are carried out to verify the effectiveness of the proposed method.Results demonstrate that the proposed method performs well in various scenarios and shows higher potential in practical applications than traditional machine learning based ones.展开更多
Voltage source converter based high-voltage direct current(VSC-HVDC)transmission technology has been extensively employed in power systems with a high penetration of renewable energy resources.However,connecting a vol...Voltage source converter based high-voltage direct current(VSC-HVDC)transmission technology has been extensively employed in power systems with a high penetration of renewable energy resources.However,connecting a voltage source converter(VSC)to an AC weak grid may cause the converter system to become unstable.In this paper,a phase-shift phaselocked loop(PS-PLL)is proposed wherein a back electromotive force(BEMF)observer is added to the conventional phaselocked loop(PLL).The BEMF observer is used to observe the voltage of the infinite grid in the stationaryαβframe,which avoids the problem of inaccurate observations of the grid voltage in the dq frame that are caused by the output phase angle errors of the PLL.The VSC using the PS-PLL can operate as if it is facing a strong grid,thus enhancing the stability of the VSC-HVDC system.The proposed PS-PLL only needs to be properly modified on the basis of a traditional PLL,which makes it easy to implement.In addition,because it is difficult to obtain the exact impedance of the grid,the influence of shortcircuit ratio(SCR)estimation errors on the performance of the PS-PLL is also studied.The effectiveness of the proposed PSPLL is verified by the small-signal stability analysis and timedomain simulation.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11504320
文摘To obtain a stable amplified spontaneous emission(ASE) source for complex environment applications, we design an ASE source and study the output power and spectral characteristics under different ambient temperatures.We optimize the structure of the ASE source to flatten the ASE spectrum, and study the output characteristics in terms of output power and optical spectrum under different pump powers. Then the performance of the ASE source is investigated in the temperature range from-18.9°C to 50°C. A stable-power and flat-spectrum ASE source can be obtained by structural optimization and pump control.
基金Supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Basic Research Program of China under Grant No 2014CB339803+2 种基金the Major National Development Project of Scientific Instrument and Equipment under Grant No2011YQ150021the National Natural Science Foundation of China under Grant Nos 61575214,61574155,61404149 and 61404150the Shanghai Municipal Commission of Science and Technology under Grant Nos 14530711300,15560722000 and 15ZR1447500
文摘Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.
基金granted by the National Natural Science Fund of China(Grant no.51578212)
文摘Objective Any natural system is constantly exchanging material, energy and information with the environment, and all tkese processes follow the basic law of thermodynamics, with no exception of groundwater recharge and discharge process. On the basis of the principle of the first law of thermodynamics, the reverse geochemical simulation method is widely used in the study of groundwater recharge, runoff and drainage process. However, some studies only consider the material conservation in theprocess, but ignore the probability of the transformation.
文摘A newly developed energy source basein China,Huaibei City,is located inthe northern part of Anhui Province,under the direct control of the provincialgovernment.Under its jurisdiction,there arethree districts and one county,covering atotal area of 2725 sq km and with a populationof 1.8 million. The city boasts unique mineralresources.A total of 13 minerals have beensurveyed,including coal,iron and kaoline.The reserves of coal,the richest of all,areestimated at about 10 billion tons and theprospective reserves 35 billion tons.Basedon its coal resources,the city has set up 24pairs of large and modern mines with anannual production capacity of 20 milliontons,ranking fifth in the country.The
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012 and 41561144006
文摘An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic prop- agation experiment is carried out in a slope environment. The pulse signal is received by the vertical line array, and the depth structure can be obtained. For the experimental data, the depth structures of pulse waveforms are different, which depends on the source range. For a source with unknown range, the depth structure of pulse waveform can be first obtained from the experimental data. Next, the depth structures of pulse waveforms in dif- ferent ranges are numerically calculated. After the process of correlating the experimental and simulated signals, the range corresponding to the maximum value of the correlation coefficient is the estimated source range. For the explosive sources in the experiment with two depths, the mean relative errors of range estimation are both less than 7%.
文摘Energy consumption is a crucial design concern in Mobile Ad hoc NETworks (MANETs) since nodes are powered by batteries with limited energy, whereas Dynamic Source Routing (DSR) protocol does not take the energy limitation of MANET nodes into account. This paper proposes an energy-saving routing algorithm based on DSR: Power Aware Routing protocol based on DSR (PAR-DSR). The design objective of PAR-DSR is to select energy-efficient paths. The main features of PAR-DSR are: (1) Nodes use the Signal Attenuation Rate (SAR) to conduct power control operations; (2) Minimum path cost as metric to balance the traffic and energy consumption of wireless nodes. The simulation results show that PAR-DSR can greatly reduce the energy consumption of MANET nodes. The average node lifetime of PAR-DSR is 50%-77% longer than that of DSR.
文摘Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.
基金Project(2301DH09002)supported by the Bureau of Planning and Natural Resources,Chongqing,ChinaProject(2022T3051)supported by the Science and Technology Service Network Initiative,ChinaProject(2018-ZL-01)supported by the Sichuan Transportation Science and Technology,China。
文摘Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarcity,which frequently impedes the generation of accurate and informative landslide susceptibility maps.Addressing this challenge,this study compiled a nationwide dataset and developed a transfer learning-based model to evaluate landslide susceptibility in the Chongqing region specifically.Notably,the proposed model,calibrated with the warmup-cosine annealing(WCA)learning rate strategy,demonstrated remarkable predictive capabilities,particularly in scenarios marked by data limitations and when training data were normalized using parameters from the source region.This is evidenced by the area under the receiver operating characteristic curve(AUC)values,which exhibited significant improvements of 51.00%,24.40%and 2.15%,respectively,compared to a deep learning model,in contexts where only 1%,5%and 10%of data from the target region were used for retraining.Simultaneously,there were reductions in loss of 16.12%,27.61%and 15.44%,respectively,in these instances.
文摘Traditional protection methods are not suitable for hybrid(cable and overhead)transmission lines in voltage source converter based high-voltage direct current(VSC-HVDC)systems.Accordingly,this paper presents the robust fault detection,classification,and location based on the empirical wavelet transform-Teager energy operator(EWT-TEO)and artificial neural network(ANN)for hybrid transmission lines in VSC-HVDC systems.The operational scheme of the proposed protection method consists of two loops①an EWT-TEO based feature extraction loop,②and an ANN-based fault detection,classification,and location loop.Under the proposed protection method,the voltage and current signals are decomposed into several sub-passbands with low and high frequencies using the empirical wavelet transform(EWT)method.The energy content extracted by the EWT is fed into the ANN for fault detection,classification,and location.Various fault cases,including the high-impedance fault(HIF)as well as noises,are performed to train the ANN with two hidden layers.The test system and signal decomposition are conducted by PSCAD/EMTDC and MATLAB,respectively.The performance of the proposed protection method is compared with that of the traditional non-pilot traveling wave(TW)based protection method.The results confirm the high accuracy of the proposed protection method for hybrid transmission lines in VSC-HVDC systems,where a mean percentage error of approximately 0.1%is achieved.
基金This work was supported by National Natural Science Foundation of China(No.51261130471).
文摘As a new generation of direct current(DC)transmission technology,voltage sourced converter(VSC)based high voltage direct current(HVDC)has been widely developed and applied all over the world.China has also carried out a deep technical research and engineering application in this area,and at present,it has been stepped into a fast growing period.This paper gives a general review over China’s VSC based HVDC in terms of engineering technology,application and future development.It comprehensively analyzes the technical difficulties and future development orientation on the aspects of the main configurations of VSC based HVDC system,topological structures of converters,control and protection technologies,flexible DC cables,converter valve tests,etc.It introduces the applicable fields and current status of China’s VSC based HVDC projects,and analyzes the application trends of VSC based HVDC projects both in China and all over the world according to the development characteristics and demands of future power grids.
基金Research funding by the CAS Strategic Leading Project (XDA08020301)National Natural Science Foundation of China (31501240)+4 种基金the open funding from State Key Laboratory of Hybrid Rice (2016KF06)the CAS-CSIRO collaboration grant (GJHZ1501)National Key Research and Development Program of China (2017YFD0301502)the project of Hunan Provincial Natural Science Foundation of China (2018JJ2286)the project of Hunan Academy of Agricultural Sciences (2017JC04)
文摘A large number of genes related to source, sink,and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This perspective paper aims to examine the reasons behind such a phenomenon and propose a strategy to resolve this situation. Specifically, we first systematically survey the currently cloned genes related to source, sink, and flow;then we discuss three factors hindering effective application of these identified genes, which include the lack of effective methods to identify limiting or critical steps in a signaling network, the misplacement of emphasis on properties, at the leaf, instead of the whole canopy level,and the non-linear complex interaction between source,sink, and flow. Finally, we propose the development of systems models of source, sink and flow, together with a detailed simulation of interactions between them and their surrounding environments, to guide effective use of the identified elements in modern rice breeding. These systems models will contribute directly to the definition of crop ideotype and also identification of critical features and parameters that limit the yield potential in current cultivars.
文摘The theory of passive localization for underwater sources based on acoustic ray channel modeling is discussed. The principles of channel modeling in Ray-theory, determination of eigenrays which connect source and receiver, analysis of DOA arriving structure and time delay spectrum arriving structure, their relationship to source location are given in the paper. Source location is estimated by matching measured DOA and TDS to their calculated counterparts. The method of Ray-theory based passive localization features its simplicity, less calculation, short array aperture and robust performance to environment parameters, as compared with those methods based on Normal Mode theory.
文摘We report a demonstration of a fast wavelength tunable source (TWS) based on the laser diode array coupled to the arrayed waveguide grating (AWG) multiplexer. The switching and optical characteristics of TWS make it a candidate for implementing the wavelength-division space switch fabric for an optical packet/burst switching.
基金supported by the National Natural Science Foundation of China(Nos.81271618 and 81371602)the Tianjin Municipal Government of China(Nos.12JCQNJC09400 and 13JCZDJC28000)the Research Fund for the Doctoral Program of Higher Education of China(No.20120032110056)
文摘The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT). We propose a region stepwise reconstruction method in CW-DOT scheme for reconstructing the background absorption and reduced scattering coefficients of the two-layered slab sample with the known geometric information. According to the relation between the thickness of the top layer and source– detector separation, the conventional measurement data are divided into two groups and are employed to reconstruct the top and bottom background optical properties, respectively. The numerical simulation results demonstrate that the proposed method can reconstruct the background optical properties of two-layered slab sample effectively. The region-of-interest reconstruction results are better than those of the conventional simultaneous reconstruction method.
基金supported by the Chinese Universities Scientific Fund (No. BUPT 2011RC009)the BUPT Excellent Ph.D. Students Foundation (No. CX201121)the Research Fund for the Doctoral Program of Higher Education (No. 20110005110014)
文摘Fluctuating polarization state-of-light in the optical loop is an important factor that seriously influences the output performance of a multi-carrier source based on re-circulating frequency shifter (RFS). The reason for output spectrum instability when no polarization controller (PC) is present in the loop is analyzed theoretically. Numerical simulations for the output spectra of the multi-carrier source with and without PC are conducted, and the trajectories of the several frequency components polarization states on the Poincare sphere with and without PC are compared. The results show that the performance of multi-carrier source based on a RFS can be improved effectively by adjusting the PC in the configuration properly.
基金the partial financial support for the work presented in this letter by the Austrian Research Promotion Agencythe Austrian COMET Program supporting the Austrian Center of Competence in Mechatronics (ACCM)
文摘Applying laser-speckle techniques in material sciences as well as in methods to characterize surface con- ditions of specimen has become the method of choice, especially if a non-contacting principle is sought. This is almost always the case for specimen that are small in at least one dimension as for example in the materiM testing of foils, fibres, or micromaterials and certainly also if elevated test-temperatures are preventing standard gauges. This letter discusses in some detail sources of error that are quite often over- looked or not even considered as significant at all, but still carry the potential to introduce uncertainties well above the system design specifications.
基金supported by the National Natural Science Foundation of China(51209214)the Research Development Foundation of Naval University of Engineering(425517K031)
文摘An improved localization method consisting of "filtering-time delay estimationhyperbolic localization" is proposed. Combining the empirical mode decomposition(EMD)and time delay estimation method based on generalized average magnitude difference function,the original signals are decomposed into intrinsic mode function(IMF) components. The energy distribution criterion and spectrum consistency criterion are used to select the IMFs, which can represent the physical characteristics of the source signal. Several sets of signals are applied to estimate the time delay, and then a vector matching criterion is proposed to select the correct time delay estimation. Considering the hydrophones location, a shell model is established and projected to a plane according to the quadrant before the hyperbolic localization. Results of mooring and sailing tests show that the proposed method improves the localization accuracy,and reduces the error caused by time delay estimation.
基金supported in part by the National Natural Science Foundation of China(No.52077037)in part by the Science and Technology Projects of Jiangsu Province(No.BE2022016).
文摘Under weak grid conditions,grid impedance is coupled with a control system for voltage source converter based high-voltage direct current(VSC-HVDC)systems,resulting in decreased synchronization stability.Unfortunately,most studies are based on the assumption that impedance ratio(R/X)is sufficiently small to ignore the effects of grid impedance.In this study,we establish a dynamic coupling model that includes grid impedance and control loops,revealing the influence mechanism of R/X on synchronization stability from a physical perspective.We also quantify the stability range of R/X in the static analysis model and introduce a sensitivity factor to measure its effect on voltage stability.Additionally,we utilize a dynamic analysis model to evaluate power angle convergence,proposing a corresponding stability criterion.We then present a method of synchronous voltage reconstruction aimed at enhancing the grid strength.Theoretical analysis shows that this method can effectively mitigate the effects of coupling between grid impedance and the controller under weak grid conditions,ensuring stable operation even under extremely weak grid conditions.Experiments validate the accuracy and effectiveness of the analysis and method.
基金supported in part by the National Key R&D Program of China(2018YFB0904600)the National Natural Science Foundation of China(No.51507008)the State Grid Corporation technology project(No.5200-201956113A-0-0-00)
文摘Lightning is one of the most common transient interferences on overhead transmission lines of high-voltage direct current(HVDC)systems.Accurate and effective recognition of faults and disturbances caused by lightning strokes is crucial in transient protections such as traveling wave protection.Traditional recognition methods which adopt feature extraction and classification models rely heavily on the performance of signal processing and practical operation experiences.Misjudgments occur due to the poor generalization performance of recognition models.To improve the recognition rates and reliability of transient protection,this paper proposes a transient recognition method based on the deep belief network.The normalized line-mode components of transient currents on HVDC transmission lines are analyzed by a deep belief network which is properly designed.The feature learning process of the deep belief network can discover the inherent characteristics and improve recognition accuracy.Simulations are carried out to verify the effectiveness of the proposed method.Results demonstrate that the proposed method performs well in various scenarios and shows higher potential in practical applications than traditional machine learning based ones.
基金supported by the National Natural Science Foundation of China(No.51677142)the National Key R&D Program of China(No.2016YFB0900600)。
文摘Voltage source converter based high-voltage direct current(VSC-HVDC)transmission technology has been extensively employed in power systems with a high penetration of renewable energy resources.However,connecting a voltage source converter(VSC)to an AC weak grid may cause the converter system to become unstable.In this paper,a phase-shift phaselocked loop(PS-PLL)is proposed wherein a back electromotive force(BEMF)observer is added to the conventional phaselocked loop(PLL).The BEMF observer is used to observe the voltage of the infinite grid in the stationaryαβframe,which avoids the problem of inaccurate observations of the grid voltage in the dq frame that are caused by the output phase angle errors of the PLL.The VSC using the PS-PLL can operate as if it is facing a strong grid,thus enhancing the stability of the VSC-HVDC system.The proposed PS-PLL only needs to be properly modified on the basis of a traditional PLL,which makes it easy to implement.In addition,because it is difficult to obtain the exact impedance of the grid,the influence of shortcircuit ratio(SCR)estimation errors on the performance of the PS-PLL is also studied.The effectiveness of the proposed PSPLL is verified by the small-signal stability analysis and timedomain simulation.