Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the ...Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).展开更多
Functional repair of injured tissue in the adult central nervous system (CNS) still remains a big challenge for current biomed- ical research and its upcoming clinical translation. The axonal regeneration of the adu...Functional repair of injured tissue in the adult central nervous system (CNS) still remains a big challenge for current biomed- ical research and its upcoming clinical translation. The axonal regeneration of the adult CNS is generally low, and it is addi- tionally restricted after injury by the presence of inhibitory mol- ecules, generated by the glial scar.展开更多
Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the ...Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the representation of a chromosome,and genetic algorithm(GA)operators are introduced based on the matrix.Objectives including mass,in-plane performance,and out-of-plane load-bearing ability of the individuals are obtained by fnite element analysis(FEA)using ANSYS,and the matrix-based optimization algorithm is realized in MATLAB by handling multiple constraints such as structural connectivity and in-plane strain requirements.Feasible confgurations of the support structure are achieved.The results confrm that the matrix-based NSGA-II with multiple constraints handling provides an effective method for two-dimensional multi-objective topology optimization.展开更多
This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopte...This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.展开更多
This article proposes a new algorithm of quaternion and dual quaternion in matrix form. It applies quaternion in special cases of rotated plane, transforming the sine and cosine of the rotation angle into matrix form,...This article proposes a new algorithm of quaternion and dual quaternion in matrix form. It applies quaternion in special cases of rotated plane, transforming the sine and cosine of the rotation angle into matrix form, then exporting flat quaternions base in two matrix form. It establishes serial 6R manipulator kinematic equations in the form of quaternion matrix. Then five variables are eliminated through linear elimination and application of lexicographic Groebner base. Thus, upper bound of the degree of the equation is determined, which is 16. In this way, a 16-degree equation with single variable is obtained without any extraneous root. This is the first time that quaternion matrix modeling has been used in 6R robot inverse kinematics analysis.展开更多
Object-based audio coding is the main technique of audio scene coding. It can effectively reconstruct each object trajectory, besides provide sufficient flexibility for personalized audio scene reconstruction. So more...Object-based audio coding is the main technique of audio scene coding. It can effectively reconstruct each object trajectory, besides provide sufficient flexibility for personalized audio scene reconstruction. So more and more attentions have been paid to the object-based audio coding. However, existing object-based techniques have poor sound quality because of low parameter frequency domain resolution. In order to achieve high quality audio object coding, we propose a new coding framework with introducing the non-negative matrix factorization(NMF) method. We extract object parameters with high resolution to improve sound quality, and apply NMF method to parameter coding to reduce the high bitrate caused by high resolution. And the experimental results have shown that the proposed framework can improve the coding quality by 25%, so it can provide a better solution to encode audio scene in a more flexible and higher quality way.展开更多
For the expected value formulation of stochastic linear complementarity problem, we establish modulus-based matrix splitting iteration methods. The convergence of the new methods is discussed when the coefficient matr...For the expected value formulation of stochastic linear complementarity problem, we establish modulus-based matrix splitting iteration methods. The convergence of the new methods is discussed when the coefficient matrix is a positive definite matrix or a positive semi-definite matrix, respectively. The advantages of the new methods are that they can solve the large scale stochastic linear complementarity problem, and spend less computational time. Numerical results show that the new methods are efficient and suitable for solving the large scale problems.展开更多
The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal superalloys are studied carefully via atomic...The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal superalloys are studied carefully via atomic modeling, with special focus on the factors influ- encing the critical bowing stress of moving dislocations in the matrix channel. The results show that the moving matrix dislocation type and its position with respect to the interfacial misfit dislocation segments have considerable influences on the interactions. If the moving matrix dislocation is pure screw, it reacts with the interracial misfit dislocation segments toward dislocation linear energy reduction, which decreases the critical bowing stress of screw dislocation due to dislocation linear energy release during the dislocation reactions. If the moving matrix dislocation is of 60^-mixed type, it is obstructed by the interaction between the mixed matrix dislocations and the misfit interfacial dislocation segments. As a result, the critical bowing stress increases significantly because extra interactive energy needs to be overcome. These two different effects on the critical bowing stress become in- creasingly significant when the moving matrix dislocation is very close to the interracial misfit dislocation segments. In addition, the matrix channel width also has a significant influence on the critical bowing stress, i.e. the narrower the matrix channel is, the higher the critical bowing stress is. The classical Orowan formula is modified to predict these effects on the critical bowing stress of moving matrix dislocation, which is in good agreement with the computational results.展开更多
SNR estimation of communication signals is important to improve demodulation performance and channel quality of communication system,thus it is an important research issue of communication field.According to the core ...SNR estimation of communication signals is important to improve demodulation performance and channel quality of communication system,thus it is an important research issue of communication field.According to the core problem of autocorrelation matrix singular value in SNR estimation process,through making use of householder transforming autocorrelation matrix into tridiagonal matrix,and by using the relation of corresponding characteristic equation coefficients and singular value,a numerical algorithm is gi...展开更多
Diamond impregnated Cu-Fe-Co based saw-blade segments are directly processed by vacuum and pressure-assisted sintering at different temperature,with the purpose of reducing the cobalt content in diamond tools.Copper a...Diamond impregnated Cu-Fe-Co based saw-blade segments are directly processed by vacuum and pressure-assisted sintering at different temperature,with the purpose of reducing the cobalt content in diamond tools.Copper and iron are used as the bonding elements and co-balt-chrome pre-alloyed powder is used as the hardening phase.Effects of sintering temperature on microstructures and mechanical properties of the sintered matrix and diamond graphitization were investigated by X-ray diffraction analysis,electron probe micro-analyzer,universal testing machine,digital Rockwell hardness tester and Raman scattering analyzer.Results showed that microstructures of the sintered matrix were refined and porosities in the sintered matrix were closed to a more spherical-like shape with the increase of the sintering temperature.Densification,hardness and tensile strength of the matrix sintered at 820 ℃ were 12.75%,2.72% and 156.38% higher than that of the matrix sintered at 740 ℃,respectively.Diamond graphitization was not occurred at 820 ℃.The hardness and the tensile strength rose 32.8% and 13.5%,respectively,after 7.5 h ageing treatment.The matrix densification ascent and the dispersed distribution of Co-Cr pre-alloyed powders contributed a hardness improvement and a tensile strength improvement to the Cu-Fe based matrix.展开更多
The Fe-based WC composite coatings were clad on Q235 steel by double-pass plasma cladding method,in which the WC-Co(WC covered with cobalt:78wt%WC,12wt%Co)doping was about 10wt%,20wt%and 40wt%,respectively.The microst...The Fe-based WC composite coatings were clad on Q235 steel by double-pass plasma cladding method,in which the WC-Co(WC covered with cobalt:78wt%WC,12wt%Co)doping was about 10wt%,20wt%and 40wt%,respectively.The microstructure and wear performance of the composite coatings were investigated by X-ray diffraction(XRD),scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and ball-disc wear tests.The results show that the clad coatings contain mainly?-Fe,WC and carbides(Cr23C6,Fe3W3C-Fe4W2C)phases and the precipitation of carbides increases with the increase of WC-Co doping content.The WC-Co doping content has an obvious effect on the microstructure of the clad coatings.For the clad coatings with low WC-Co doping,the microstructure gradually transforms from planar crystal at the interface of substrate/coating to cell/dendritic crystal at the middle and the upper portion of the coatings.But there are a number of fishbone-like structure at the middle and the upper portion of clad coating with 40wt%WC-Co doping.The microstructure at the top is smaller than that at the bottom for all the coatings.The maximum of hardness of the clad coatings is 72.3HRC which is about 6.9 as much as the hardness of Q235 steel substrate.The composite coatings have good wear resistance due to the reinforcement of carbide particles and the strong bonding between carbide particles and ferroalloy.The suitable increase of WC-Co doping content can improve the wear resistance of the composite coatings.展开更多
This paper describes the damage detection in framed structures due to thevertical support settlement and rotation of footing bases. The damage detection procedureproposed by Nobahari et al. [Nobahari and Seyedpoor (20...This paper describes the damage detection in framed structures due to thevertical support settlement and rotation of footing bases. The damage detection procedureproposed by Nobahari et al. [Nobahari and Seyedpoor (2013)] is used to detect thedamage in the members of the frame. In the present study, instead of using the flexibilitymatrix (referred here as original flexibility matrix) method, the generalized flexibilitymatrix is used in the same algorithm and the results are compared. The algorithm usesflexibility matrix and strain energy concept to detect the damage in the members. Thebehaviour of the frame is discussed through changes observed in flexibility in theassociated degree of freedom. Finally, the results indicate that, the damage indexdetermined by generalized flexibility matrix method is more reliable than using theoriginal flexibility matrix based method for the problem of settlement and rotation offooting base.展开更多
Iron-plating technology used for restoration of axis parts was applied to the manufacture of diamond bits in this paper.The technology for electroplating diamond bit of iron matrix was mastered through repeated experi...Iron-plating technology used for restoration of axis parts was applied to the manufacture of diamond bits in this paper.The technology for electroplating diamond bit of iron matrix was mastered through repeated experiments and research.The productive practice indicated that the DC-electroplated iron matrix of diamond bit has high hardness and good diamond exposure ability;the drilling rate of electroplated iron-based diamond bit was 2 m/h when drilling in grade 9 granite and bit life can reach 44 m,which can satisfy the drilling production requirements.展开更多
In this paper, a new passivity-based synchronization method for a general class of chaotic systems is proposed. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the passivity-based contr...In this paper, a new passivity-based synchronization method for a general class of chaotic systems is proposed. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the passivity-based controller is presented to make the synchronization error system not only passive but also asymptotically stable. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies for the Genesio-Tesi chaotic system and the Qi chaotic system are presented to demonstrate the effectiveness of the proposed scheme.展开更多
In this work, a quaternary Ni-Cu-Nb-Ta system has been designed to obtain composite microstructure with sphericalcrystalline Cu-rich particles embedded in amorphous Ni-rich matrix. The alloy samples were prepared by u...In this work, a quaternary Ni-Cu-Nb-Ta system has been designed to obtain composite microstructure with sphericalcrystalline Cu-rich particles embedded in amorphous Ni-rich matrix. The alloy samples were prepared by using single-roller melting-spinning method. The microstructure and thermal properties of the as-quenched alloy samples were char-acterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, anddifferential scanning calorimetry. It shows that the spherical crystalline Cu-rich particles are embedded in the amorphousNi-rich matrix. The average size of the Cu-rich particles is strongly dependent upon the Cu content. The effect of the alloycomposition on the behavior of liquid-liquid phase separation and microstructure evolution was discussed. The phaseformation in the Ni-based metallic glass matrix composite was analyzed.展开更多
Physical properties and microstructural evolution on firing of 3 types of bauxite based refractory bricks were carried out using techniques such as porosimetry, XRD and SEM. The groups differed from each other by prog...Physical properties and microstructural evolution on firing of 3 types of bauxite based refractory bricks were carried out using techniques such as porosimetry, XRD and SEM. The groups differed from each other by progressive refining of the matrix or bond phase. It is revealed that such a refinement of the matrix can improve the high temperature properties of the bricks made from poor grade materials .展开更多
In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based m...In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based metal matrix composites reinforced with different amounts of xGnP were fabricated by powder metallurgy route. The microstructure, sliding wear behaviour and mechanical properties of the Cu-xGnP composites were investigated. xGnP has been synthesized from the graphite intercalation compounds (GIC) through rapid evaporation of the intercalant at an elevated temperature. The thermally exfoliated graphite was later sonicated for a period of 5 h in acetone in order to achieve further exfoliation. The xGnP synthesized was characterized using SEM, HRTEM, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The Cu and xGnP powder mixtures were consolidated under a load of 565 MPa followed by sintering at 850°C for 2 h in inert atmosphere. Cu-1, 2, 3 and 5 wt% xGnP composites were developed. Results of the wear test show that there is a significant improvement in the wear resistance of the composites up to addition of 2 wt% of xGnP. Hardness, tensile strength and strain at failure of the various Cu-xGnP composites also show improvement upto the addition of 2 wt% xGnP beyond which there is a decrease in these properties. The density of the composites decreases with the addition of higher wt% of xGnP although addition of higher wt% of xGnP leads to higher sinterability and densification of the composites, resulting in higher relative density values. The nature of fracture in the pure Cu as well as the various Cu-xGnP composites was found to be ductile. Nanoplatelets of graphite were found firmly embedded in the Cu matrix in case of Cu-xGnP composites containing low wt% of xGnP.展开更多
Matrix-assisted laser desorption/ionization (MALDI) is a preferred and widely used mass spectrometric technique for the analysis of macromolecules. Limited UV-LDI matrices are available for the analysis of biomolecule...Matrix-assisted laser desorption/ionization (MALDI) is a preferred and widely used mass spectrometric technique for the analysis of macromolecules. Limited UV-LDI matrices are available for the analysis of biomolecules due to the restricted structural features to serve in the laser desorption/ionization mechanism with a problem of background signals appearing in the low mass region. This paper describes the application of Schiff base derivatives of acylhydrazide and isatin as alternate UV-LDI matrices for the analysis of peptides with significantly low background signals. Thirty one compounds have been successfully employed as matrices for the analysis of low molecular weight (LMW) peptides (α-Cyano-4-hydroxycinnamic acid (HCCA), a preferred choice for peptide analysis.展开更多
Direct dynamics simulations are a useful and general approach for studying the atomistic properties of complex chemical systems because they do not require fitting an analytic potential energy function.Hessian-based p...Direct dynamics simulations are a useful and general approach for studying the atomistic properties of complex chemical systems because they do not require fitting an analytic potential energy function.Hessian-based predictor-corrector integrators are a widely used approach for calculating the trajectories of moving atoms in direct dynamics simulations.We employ a monodromy matrix to propose a tool for evaluating the accuracy of integrators in the trajectory calculation.We choose a general velocity Verlet as a different object.We also simulate molecular with hydrogen(CO_2) and molecular with hydrogen(H_2O) motions.Comparing the eigenvalues of monodromy matrix,many simulations show that Hessian-based predictor-corrector integrators perform well for Hessian updates and non-Hessian updates.Hessian-based predictor-corrector integrator with Hessian update has a strong performance in the H_2O simulations.Hessian-based predictor-corrector integrator with Hessian update has a strong performance when the integrating step of the velocity Verlet approach is tripled for the predicting step.In the CO_2 simulations,a strong performance occurs when the integrating step is a multiple of five.展开更多
文摘Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).
基金supported by MEYS of the Czech Republic,No.LO1309
文摘Functional repair of injured tissue in the adult central nervous system (CNS) still remains a big challenge for current biomed- ical research and its upcoming clinical translation. The axonal regeneration of the adult CNS is generally low, and it is addi- tionally restricted after injury by the presence of inhibitory mol- ecules, generated by the glial scar.
基金supported by the National Natural Science Foundation of China(Nos.50905085 and 91116020)the National Science Foundation for Post-doctoral Scientists of China(No.2012M511263)
文摘Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the representation of a chromosome,and genetic algorithm(GA)operators are introduced based on the matrix.Objectives including mass,in-plane performance,and out-of-plane load-bearing ability of the individuals are obtained by fnite element analysis(FEA)using ANSYS,and the matrix-based optimization algorithm is realized in MATLAB by handling multiple constraints such as structural connectivity and in-plane strain requirements.Feasible confgurations of the support structure are achieved.The results confrm that the matrix-based NSGA-II with multiple constraints handling provides an effective method for two-dimensional multi-objective topology optimization.
基金Project supported by the National Natural Science Foundation of China(Grant No.61304064)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant Nos.15B067 and 16C0475)a Discovering Grant from Australian Research Council
文摘This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.
文摘This article proposes a new algorithm of quaternion and dual quaternion in matrix form. It applies quaternion in special cases of rotated plane, transforming the sine and cosine of the rotation angle into matrix form, then exporting flat quaternions base in two matrix form. It establishes serial 6R manipulator kinematic equations in the form of quaternion matrix. Then five variables are eliminated through linear elimination and application of lexicographic Groebner base. Thus, upper bound of the degree of the equation is determined, which is 16. In this way, a 16-degree equation with single variable is obtained without any extraneous root. This is the first time that quaternion matrix modeling has been used in 6R robot inverse kinematics analysis.
基金supported by National High Technology Research and Development Program of China (863 Program) (No.2015AA016306)National Nature Science Foundation of China (No.61231015)National Nature Science Foundation of China (No.61671335)
文摘Object-based audio coding is the main technique of audio scene coding. It can effectively reconstruct each object trajectory, besides provide sufficient flexibility for personalized audio scene reconstruction. So more and more attentions have been paid to the object-based audio coding. However, existing object-based techniques have poor sound quality because of low parameter frequency domain resolution. In order to achieve high quality audio object coding, we propose a new coding framework with introducing the non-negative matrix factorization(NMF) method. We extract object parameters with high resolution to improve sound quality, and apply NMF method to parameter coding to reduce the high bitrate caused by high resolution. And the experimental results have shown that the proposed framework can improve the coding quality by 25%, so it can provide a better solution to encode audio scene in a more flexible and higher quality way.
文摘For the expected value formulation of stochastic linear complementarity problem, we establish modulus-based matrix splitting iteration methods. The convergence of the new methods is discussed when the coefficient matrix is a positive definite matrix or a positive semi-definite matrix, respectively. The advantages of the new methods are that they can solve the large scale stochastic linear complementarity problem, and spend less computational time. Numerical results show that the new methods are efficient and suitable for solving the large scale problems.
基金supported by the financial support from NSFC (Grant 11472113 and Grant 11272130)
文摘The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal superalloys are studied carefully via atomic modeling, with special focus on the factors influ- encing the critical bowing stress of moving dislocations in the matrix channel. The results show that the moving matrix dislocation type and its position with respect to the interfacial misfit dislocation segments have considerable influences on the interactions. If the moving matrix dislocation is pure screw, it reacts with the interracial misfit dislocation segments toward dislocation linear energy reduction, which decreases the critical bowing stress of screw dislocation due to dislocation linear energy release during the dislocation reactions. If the moving matrix dislocation is of 60^-mixed type, it is obstructed by the interaction between the mixed matrix dislocations and the misfit interfacial dislocation segments. As a result, the critical bowing stress increases significantly because extra interactive energy needs to be overcome. These two different effects on the critical bowing stress become in- creasingly significant when the moving matrix dislocation is very close to the interracial misfit dislocation segments. In addition, the matrix channel width also has a significant influence on the critical bowing stress, i.e. the narrower the matrix channel is, the higher the critical bowing stress is. The classical Orowan formula is modified to predict these effects on the critical bowing stress of moving matrix dislocation, which is in good agreement with the computational results.
基金supported by the National Natural Science Foundation of China (Grant No.90604031)
文摘SNR estimation of communication signals is important to improve demodulation performance and channel quality of communication system,thus it is an important research issue of communication field.According to the core problem of autocorrelation matrix singular value in SNR estimation process,through making use of householder transforming autocorrelation matrix into tridiagonal matrix,and by using the relation of corresponding characteristic equation coefficients and singular value,a numerical algorithm is gi...
基金financially supported by Gansu Key Technology Project (No.090JKCA050)Gansu Outstanding Youth Foundation (No.201105)
文摘Diamond impregnated Cu-Fe-Co based saw-blade segments are directly processed by vacuum and pressure-assisted sintering at different temperature,with the purpose of reducing the cobalt content in diamond tools.Copper and iron are used as the bonding elements and co-balt-chrome pre-alloyed powder is used as the hardening phase.Effects of sintering temperature on microstructures and mechanical properties of the sintered matrix and diamond graphitization were investigated by X-ray diffraction analysis,electron probe micro-analyzer,universal testing machine,digital Rockwell hardness tester and Raman scattering analyzer.Results showed that microstructures of the sintered matrix were refined and porosities in the sintered matrix were closed to a more spherical-like shape with the increase of the sintering temperature.Densification,hardness and tensile strength of the matrix sintered at 820 ℃ were 12.75%,2.72% and 156.38% higher than that of the matrix sintered at 740 ℃,respectively.Diamond graphitization was not occurred at 820 ℃.The hardness and the tensile strength rose 32.8% and 13.5%,respectively,after 7.5 h ageing treatment.The matrix densification ascent and the dispersed distribution of Co-Cr pre-alloyed powders contributed a hardness improvement and a tensile strength improvement to the Cu-Fe based matrix.
基金Fundamental Research Funds for the Central Universities(2009B16214)China Postdoctoral Science Foundation funded project(20100481079)Scientific Research Start-up Fund Project of Hohai University(20080403)
文摘The Fe-based WC composite coatings were clad on Q235 steel by double-pass plasma cladding method,in which the WC-Co(WC covered with cobalt:78wt%WC,12wt%Co)doping was about 10wt%,20wt%and 40wt%,respectively.The microstructure and wear performance of the composite coatings were investigated by X-ray diffraction(XRD),scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and ball-disc wear tests.The results show that the clad coatings contain mainly?-Fe,WC and carbides(Cr23C6,Fe3W3C-Fe4W2C)phases and the precipitation of carbides increases with the increase of WC-Co doping content.The WC-Co doping content has an obvious effect on the microstructure of the clad coatings.For the clad coatings with low WC-Co doping,the microstructure gradually transforms from planar crystal at the interface of substrate/coating to cell/dendritic crystal at the middle and the upper portion of the coatings.But there are a number of fishbone-like structure at the middle and the upper portion of clad coating with 40wt%WC-Co doping.The microstructure at the top is smaller than that at the bottom for all the coatings.The maximum of hardness of the clad coatings is 72.3HRC which is about 6.9 as much as the hardness of Q235 steel substrate.The composite coatings have good wear resistance due to the reinforcement of carbide particles and the strong bonding between carbide particles and ferroalloy.The suitable increase of WC-Co doping content can improve the wear resistance of the composite coatings.
文摘This paper describes the damage detection in framed structures due to thevertical support settlement and rotation of footing bases. The damage detection procedureproposed by Nobahari et al. [Nobahari and Seyedpoor (2013)] is used to detect thedamage in the members of the frame. In the present study, instead of using the flexibilitymatrix (referred here as original flexibility matrix) method, the generalized flexibilitymatrix is used in the same algorithm and the results are compared. The algorithm usesflexibility matrix and strain energy concept to detect the damage in the members. Thebehaviour of the frame is discussed through changes observed in flexibility in theassociated degree of freedom. Finally, the results indicate that, the damage indexdetermined by generalized flexibility matrix method is more reliable than using theoriginal flexibility matrix based method for the problem of settlement and rotation offooting base.
文摘Iron-plating technology used for restoration of axis parts was applied to the manufacture of diamond bits in this paper.The technology for electroplating diamond bit of iron matrix was mastered through repeated experiments and research.The productive practice indicated that the DC-electroplated iron matrix of diamond bit has high hardness and good diamond exposure ability;the drilling rate of electroplated iron-based diamond bit was 2 m/h when drilling in grade 9 granite and bit life can reach 44 m,which can satisfy the drilling production requirements.
文摘In this paper, a new passivity-based synchronization method for a general class of chaotic systems is proposed. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the passivity-based controller is presented to make the synchronization error system not only passive but also asymptotically stable. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies for the Genesio-Tesi chaotic system and the Qi chaotic system are presented to demonstrate the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.51774264,51574216 and 51374194)the Natural Science Foundation of Liaoning Province of China(Grant No.2015020172)
文摘In this work, a quaternary Ni-Cu-Nb-Ta system has been designed to obtain composite microstructure with sphericalcrystalline Cu-rich particles embedded in amorphous Ni-rich matrix. The alloy samples were prepared by using single-roller melting-spinning method. The microstructure and thermal properties of the as-quenched alloy samples were char-acterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, anddifferential scanning calorimetry. It shows that the spherical crystalline Cu-rich particles are embedded in the amorphousNi-rich matrix. The average size of the Cu-rich particles is strongly dependent upon the Cu content. The effect of the alloycomposition on the behavior of liquid-liquid phase separation and microstructure evolution was discussed. The phaseformation in the Ni-based metallic glass matrix composite was analyzed.
文摘Physical properties and microstructural evolution on firing of 3 types of bauxite based refractory bricks were carried out using techniques such as porosimetry, XRD and SEM. The groups differed from each other by progressive refining of the matrix or bond phase. It is revealed that such a refinement of the matrix can improve the high temperature properties of the bricks made from poor grade materials .
文摘In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based metal matrix composites reinforced with different amounts of xGnP were fabricated by powder metallurgy route. The microstructure, sliding wear behaviour and mechanical properties of the Cu-xGnP composites were investigated. xGnP has been synthesized from the graphite intercalation compounds (GIC) through rapid evaporation of the intercalant at an elevated temperature. The thermally exfoliated graphite was later sonicated for a period of 5 h in acetone in order to achieve further exfoliation. The xGnP synthesized was characterized using SEM, HRTEM, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The Cu and xGnP powder mixtures were consolidated under a load of 565 MPa followed by sintering at 850°C for 2 h in inert atmosphere. Cu-1, 2, 3 and 5 wt% xGnP composites were developed. Results of the wear test show that there is a significant improvement in the wear resistance of the composites up to addition of 2 wt% of xGnP. Hardness, tensile strength and strain at failure of the various Cu-xGnP composites also show improvement upto the addition of 2 wt% xGnP beyond which there is a decrease in these properties. The density of the composites decreases with the addition of higher wt% of xGnP although addition of higher wt% of xGnP leads to higher sinterability and densification of the composites, resulting in higher relative density values. The nature of fracture in the pure Cu as well as the various Cu-xGnP composites was found to be ductile. Nanoplatelets of graphite were found firmly embedded in the Cu matrix in case of Cu-xGnP composites containing low wt% of xGnP.
文摘Matrix-assisted laser desorption/ionization (MALDI) is a preferred and widely used mass spectrometric technique for the analysis of macromolecules. Limited UV-LDI matrices are available for the analysis of biomolecules due to the restricted structural features to serve in the laser desorption/ionization mechanism with a problem of background signals appearing in the low mass region. This paper describes the application of Schiff base derivatives of acylhydrazide and isatin as alternate UV-LDI matrices for the analysis of peptides with significantly low background signals. Thirty one compounds have been successfully employed as matrices for the analysis of low molecular weight (LMW) peptides (α-Cyano-4-hydroxycinnamic acid (HCCA), a preferred choice for peptide analysis.
基金Project(2016JJ2029)supported by Hunan Provincial Natural Science Foundation of ChinaProject(2016WLZC014)supported by the Open Research Fund of Hunan Provincial Key Laboratory of Network Investigational TechnologyProject(2015HNWLFZ059)supported by the Open Research Fund of Key Laboratory of Network Crime Investigation of Hunan Provincial Colleges,China
文摘Direct dynamics simulations are a useful and general approach for studying the atomistic properties of complex chemical systems because they do not require fitting an analytic potential energy function.Hessian-based predictor-corrector integrators are a widely used approach for calculating the trajectories of moving atoms in direct dynamics simulations.We employ a monodromy matrix to propose a tool for evaluating the accuracy of integrators in the trajectory calculation.We choose a general velocity Verlet as a different object.We also simulate molecular with hydrogen(CO_2) and molecular with hydrogen(H_2O) motions.Comparing the eigenvalues of monodromy matrix,many simulations show that Hessian-based predictor-corrector integrators perform well for Hessian updates and non-Hessian updates.Hessian-based predictor-corrector integrator with Hessian update has a strong performance in the H_2O simulations.Hessian-based predictor-corrector integrator with Hessian update has a strong performance when the integrating step of the velocity Verlet approach is tripled for the predicting step.In the CO_2 simulations,a strong performance occurs when the integrating step is a multiple of five.