This paper aims to investigate the tamed Euler method for the random periodic solution of semilinear SDEs with one-sided Lipschitz coefficient.We introduce a novel approach to analyze mean-square error bounds of the n...This paper aims to investigate the tamed Euler method for the random periodic solution of semilinear SDEs with one-sided Lipschitz coefficient.We introduce a novel approach to analyze mean-square error bounds of the novel schemes,without relying on a priori high-order moment bound of the numerical approximation.The expected order-one mean square convergence is attained for the proposed scheme.Moreover,a numerical example is presented to verify our theoretical analysis.展开更多
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
Several efficient analytical methods have been developed to solve the solid-state diffusion problem, for constant diffusion coefficient problems. However, these methods cannot be applied for concentration-dependent di...Several efficient analytical methods have been developed to solve the solid-state diffusion problem, for constant diffusion coefficient problems. However, these methods cannot be applied for concentration-dependent diffusion coefficient problems and numerical methods are used instead. Herein, grid-based numerical methods derived from the control volume discretization are presented to resolve the characteristic nonlinear system of partial differential equations. A novel hybrid backward Euler control volume (HBECV) method is presented which requires only one iteration to reach an implicit solution. The HBECV results are shown to be stable and accurate for a moderate number of grid points. The computational speed and accuracy of the HBECV, justify its use in battery simulations, in which the solid-state diffusion coefficient is a strong function of the concentration.展开更多
In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a ge...In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results.展开更多
In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite ele- ment method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian co...In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite ele- ment method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian coordinate. Its advantages include preservation of the local conservation and a high resolution. Compared with the Runge-Kutta discon- tinuous Galerkin (RKDG) method, the RKCV method is easier to implement. Moreover, the advantages of the RKCV and the Lagrangian methods are combined in the new method. Several numerical examples are given to illustrate the accuracy and the reliability of the algorithm.展开更多
Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the dr...Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the drilling boreholes. The purpose of this study is to use field geophysics to calculate the depth of mineral reserve. The study area is located 38 km from Zarand city called Jalalabad iron mine. In this study, gravimetric data were measured and mineral depth was calculated using the Euler method. 1314 readings have been performed in this area. The rocks of the region include volcanic and sedimentary. The source of the mineralization in the area is hydrothermal processes. After gravity measuring in the region, the data were corrected, then various methods such as anomalous map remaining in levels one and two, upward expansion, first and second-degree vertical derivatives, analytical method, and analytical signal were drawn, and finally, the depth of the deposit was estimated by Euler method. As a result, the depth of the mineral deposit was calculated to be between 20 and 30 meters on average.展开更多
In this article,a meshless method using the spacetime collocation for solving the two-dimensional backward heat conduction problem(BHCP)is proposed.The spacetime collocation meshless method(SCMM)is to derive the gener...In this article,a meshless method using the spacetime collocation for solving the two-dimensional backward heat conduction problem(BHCP)is proposed.The spacetime collocation meshless method(SCMM)is to derive the general solutions as the basis functions for the two-dimensional transient heat equation using the separation of variables.Numerical solutions of the heat conduction problem are expressed as a series using the addition theorem.Because the basis functions are the general solutions of the governing equation,the boundary points may be collocated on the spacetime boundary of the domain.The proposed method is verified by conducting several heat conduction problems.We also carry out numerical applications to compare the SCMM with other meshless methods.The results show that the SCMM is accurate and efficient.Furthermore,it is found that the recovered boundary data on inaccessible boundary can be obtained with high accuracy even though the over specified data are provided only at a 1/6 portion of the spacetime boundary.展开更多
This work focuses on the temporal average of the backward Euler-Maruyama(BEM)method,which is used to approximate the ergodic limit of stochastic ordinary differential equations(SODEs).We give the central limit theorem...This work focuses on the temporal average of the backward Euler-Maruyama(BEM)method,which is used to approximate the ergodic limit of stochastic ordinary differential equations(SODEs).We give the central limit theorem(CLT)of the temporal average of the BEM method,which characterizes its asymptotics in distribution.When the deviation order is smaller than the optimal strong order,we directly derive the CLT of the temporal average through that of original equations and the uniform strong order of the BEM method.For the case that the deviation order equals to the optimal strong order,the CLT is established via the Poisson equation associated with the generator of original equations.Numerical experiments are performed to illustrate the theoretical results.The main contribution of this work is to generalize the existing CLT of the temporal average of numerical methods to that for SODEs with super-linearly growing drift coefficients.展开更多
In this paper,we present the semi-implicit Euler(SIE)numerical solution for stochastic pantograph equations with jumps and prove that the SIE approximation solution converges to the exact solution in the mean-square...In this paper,we present the semi-implicit Euler(SIE)numerical solution for stochastic pantograph equations with jumps and prove that the SIE approximation solution converges to the exact solution in the mean-square sense under the Local Lipschitz condition.展开更多
This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, th...This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.展开更多
Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained result...Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.展开更多
A preconditioned gridless method is developed for solving the Euler equations at low Mach numbers.The preconditioned system in a conservation form is obtained by multiplying apreconditioning matrix of the type of Weis...A preconditioned gridless method is developed for solving the Euler equations at low Mach numbers.The preconditioned system in a conservation form is obtained by multiplying apreconditioning matrix of the type of Weiss and Smith to the time derivative of the Euler equations,which are discretized using agridless technique wherein the physical domain is distributed by clouds of points.The implementation of the preconditioned gridless method is mainly based on the frame of the traditional gridless method without preconditioning,which may fail to converge for low Mach number simulations.Therefore,the modifications corresponding to the affected terms of preconditioning are mainly addressed.The numerical results show that the preconditioned gridless method still functions for compressible transonic flow simulations and additionally,for nearly incompressible flow simulations at low Mach numbers as well.The paper ends with the nearly incompressible flow over a multi-element airfoil,which demonstrates the ability of the method presented for treating flows over complicated geometries.展开更多
The numerical solutions of standing waves for Euler equations with the nonlinear free surface boundary condition in a two-dimensional (2D) tank are studied. The irregular tank is mapped onto a fixed square domain th...The numerical solutions of standing waves for Euler equations with the nonlinear free surface boundary condition in a two-dimensional (2D) tank are studied. The irregular tank is mapped onto a fixed square domain through proper mapping functions. A staggered mesh system is employed in a 2D tank to calculate the elevation of the transient fluid. A time-independent finite difference method, which is developed by Bang- fuh Chen, is used to solve the Euler equations for incompressible and inviscid fluids. The numerical results agree well with the analytic solutions and previously published results. The sloshing profiles of surge and heave motion with initial standing waves are presented. The results show very clear nonlinear and beating phenomena.展开更多
This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification o...This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.展开更多
This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical m...This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.展开更多
In this work, we apply the Zhou’s method [1] or differential transformation method (DTM) for solving the Euler equidimensional equation. The Zhou’s method may be considered as alternative and efficient for finding t...In this work, we apply the Zhou’s method [1] or differential transformation method (DTM) for solving the Euler equidimensional equation. The Zhou’s method may be considered as alternative and efficient for finding the approximate solutions of initial values problems. We prove superiority of this method by applying them on the some Euler type equation, in this case of order 2 and 3 [2]. The power series solution of the reduced equation transforms into an approximate implicit solution of the original equations. The results agreed with the exact solution obtained via transformation to a constant coefficient equation.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12471394,12371417)Natural Science Foundation of Changsha(No.kq2502101)。
文摘This paper aims to investigate the tamed Euler method for the random periodic solution of semilinear SDEs with one-sided Lipschitz coefficient.We introduce a novel approach to analyze mean-square error bounds of the novel schemes,without relying on a priori high-order moment bound of the numerical approximation.The expected order-one mean square convergence is attained for the proposed scheme.Moreover,a numerical example is presented to verify our theoretical analysis.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
文摘Several efficient analytical methods have been developed to solve the solid-state diffusion problem, for constant diffusion coefficient problems. However, these methods cannot be applied for concentration-dependent diffusion coefficient problems and numerical methods are used instead. Herein, grid-based numerical methods derived from the control volume discretization are presented to resolve the characteristic nonlinear system of partial differential equations. A novel hybrid backward Euler control volume (HBECV) method is presented which requires only one iteration to reach an implicit solution. The HBECV results are shown to be stable and accurate for a moderate number of grid points. The computational speed and accuracy of the HBECV, justify its use in battery simulations, in which the solid-state diffusion coefficient is a strong function of the concentration.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12371393,11971150 and 11801143)Natural Science Foundation of Henan Province(Grant No.242300421047).
文摘In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035 and 11171038)the Science Research Foundation of the Institute of Higher Education of Inner Mongolia Autonomous Region, China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2012MS0102)
文摘In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite ele- ment method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian coordinate. Its advantages include preservation of the local conservation and a high resolution. Compared with the Runge-Kutta discon- tinuous Galerkin (RKDG) method, the RKCV method is easier to implement. Moreover, the advantages of the RKCV and the Lagrangian methods are combined in the new method. Several numerical examples are given to illustrate the accuracy and the reliability of the algorithm.
文摘Mineral exploration is done by different methods. Geophysical and geochemical studies are two powerful tools in this field. In integrated studies, the results of each study are used to determine the location of the drilling boreholes. The purpose of this study is to use field geophysics to calculate the depth of mineral reserve. The study area is located 38 km from Zarand city called Jalalabad iron mine. In this study, gravimetric data were measured and mineral depth was calculated using the Euler method. 1314 readings have been performed in this area. The rocks of the region include volcanic and sedimentary. The source of the mineralization in the area is hydrothermal processes. After gravity measuring in the region, the data were corrected, then various methods such as anomalous map remaining in levels one and two, upward expansion, first and second-degree vertical derivatives, analytical method, and analytical signal were drawn, and finally, the depth of the deposit was estimated by Euler method. As a result, the depth of the mineral deposit was calculated to be between 20 and 30 meters on average.
文摘In this article,a meshless method using the spacetime collocation for solving the two-dimensional backward heat conduction problem(BHCP)is proposed.The spacetime collocation meshless method(SCMM)is to derive the general solutions as the basis functions for the two-dimensional transient heat equation using the separation of variables.Numerical solutions of the heat conduction problem are expressed as a series using the addition theorem.Because the basis functions are the general solutions of the governing equation,the boundary points may be collocated on the spacetime boundary of the domain.The proposed method is verified by conducting several heat conduction problems.We also carry out numerical applications to compare the SCMM with other meshless methods.The results show that the SCMM is accurate and efficient.Furthermore,it is found that the recovered boundary data on inaccessible boundary can be obtained with high accuracy even though the over specified data are provided only at a 1/6 portion of the spacetime boundary.
基金supported by the National Natural Science Foundation of China(Grant Nos.12201228,12171047)by the Fundamental Research Funds for the Central Universities(Grant No.3004011142).
文摘This work focuses on the temporal average of the backward Euler-Maruyama(BEM)method,which is used to approximate the ergodic limit of stochastic ordinary differential equations(SODEs).We give the central limit theorem(CLT)of the temporal average of the BEM method,which characterizes its asymptotics in distribution.When the deviation order is smaller than the optimal strong order,we directly derive the CLT of the temporal average through that of original equations and the uniform strong order of the BEM method.For the case that the deviation order equals to the optimal strong order,the CLT is established via the Poisson equation associated with the generator of original equations.Numerical experiments are performed to illustrate the theoretical results.The main contribution of this work is to generalize the existing CLT of the temporal average of numerical methods to that for SODEs with super-linearly growing drift coefficients.
基金Supported by the NSF of the Higher Education Institutions of Jiangsu Province(10KJD110006)Supported by the grant of Jiangsu Institute of Education(Jsjy2009zd03)Supported by the Qing Lan Project of Jiangsu Province(2010)
文摘In this paper,we present the semi-implicit Euler(SIE)numerical solution for stochastic pantograph equations with jumps and prove that the SIE approximation solution converges to the exact solution in the mean-square sense under the Local Lipschitz condition.
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the National Defense Foundation of China
文摘This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.
文摘Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.
基金supported by the National Natural Science Foundation of China(No.11172134)
文摘A preconditioned gridless method is developed for solving the Euler equations at low Mach numbers.The preconditioned system in a conservation form is obtained by multiplying apreconditioning matrix of the type of Weiss and Smith to the time derivative of the Euler equations,which are discretized using agridless technique wherein the physical domain is distributed by clouds of points.The implementation of the preconditioned gridless method is mainly based on the frame of the traditional gridless method without preconditioning,which may fail to converge for low Mach number simulations.Therefore,the modifications corresponding to the affected terms of preconditioning are mainly addressed.The numerical results show that the preconditioned gridless method still functions for compressible transonic flow simulations and additionally,for nearly incompressible flow simulations at low Mach numbers as well.The paper ends with the nearly incompressible flow over a multi-element airfoil,which demonstrates the ability of the method presented for treating flows over complicated geometries.
文摘The numerical solutions of standing waves for Euler equations with the nonlinear free surface boundary condition in a two-dimensional (2D) tank are studied. The irregular tank is mapped onto a fixed square domain through proper mapping functions. A staggered mesh system is employed in a 2D tank to calculate the elevation of the transient fluid. A time-independent finite difference method, which is developed by Bang- fuh Chen, is used to solve the Euler equations for incompressible and inviscid fluids. The numerical results agree well with the analytic solutions and previously published results. The sloshing profiles of surge and heave motion with initial standing waves are presented. The results show very clear nonlinear and beating phenomena.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10771019 and 10826107)
文摘This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.
基金Supported by National Natural Science Foundation of China(10571036)the Key Discipline Development Program of Beijing Municipal Commission (XK100080537)
基金supported by the National Natural Science Foundation of China(6127312660904032)the Natural Science Foundation of Guangdong Province(10251064101000008)
文摘This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.
文摘In this work, we apply the Zhou’s method [1] or differential transformation method (DTM) for solving the Euler equidimensional equation. The Zhou’s method may be considered as alternative and efficient for finding the approximate solutions of initial values problems. We prove superiority of this method by applying them on the some Euler type equation, in this case of order 2 and 3 [2]. The power series solution of the reduced equation transforms into an approximate implicit solution of the original equations. The results agreed with the exact solution obtained via transformation to a constant coefficient equation.