A better understanding of the neural mechanisms of finger-force regulation can help to explain the relationship between the central nervous system and nerve-muscle force, as well as assist in motor functional rehabili...A better understanding of the neural mechanisms of finger-force regulation can help to explain the relationship between the central nervous system and nerve-muscle force, as well as assist in motor functional rehabilitation and the development robot hand designs. In the present study, 11 healthy volunteers performed a different target force-tracking task, which involved the index finger alone, index and middle finger together, and the combination of four fingers (i.e., index, middle, ring, and little). The target force trace corresponded to 3 levels of 20% maximal voluntary changes (MVC), 30% MVC, and 40% MVC in 20 seconds. In the test, an unexpected single 120% motor threshold transcranial magnetic stimulation was applied to the primary motor cortex (M1) during force tracking. Results revealed that peak force changes increased with increasing background force and the number of involved task fingers. These results demonstrate that M1 neural activities correlate with finger-force production, and M1 plays a role in finger-force control. Moreover, different neuronal networks were required for different finger patterns; a complicated task required multi-finger combinations and a complicated neuronal network comprised a large number of neurons.展开更多
This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectio...This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development.展开更多
基金the Fundamental Research Funds for the Central Universities,No.CDJZR11230002
文摘A better understanding of the neural mechanisms of finger-force regulation can help to explain the relationship between the central nervous system and nerve-muscle force, as well as assist in motor functional rehabilitation and the development robot hand designs. In the present study, 11 healthy volunteers performed a different target force-tracking task, which involved the index finger alone, index and middle finger together, and the combination of four fingers (i.e., index, middle, ring, and little). The target force trace corresponded to 3 levels of 20% maximal voluntary changes (MVC), 30% MVC, and 40% MVC in 20 seconds. In the test, an unexpected single 120% motor threshold transcranial magnetic stimulation was applied to the primary motor cortex (M1) during force tracking. Results revealed that peak force changes increased with increasing background force and the number of involved task fingers. These results demonstrate that M1 neural activities correlate with finger-force production, and M1 plays a role in finger-force control. Moreover, different neuronal networks were required for different finger patterns; a complicated task required multi-finger combinations and a complicated neuronal network comprised a large number of neurons.
基金Key Project of the National Natural Science Foundation of China (42330611)National Natural Science Foundation of China (42105008)。
文摘This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development.