This paper introduces a sliding-window mean removal high pass filter by which background clutter of infrared multispectral image is obtained. The method of selecting the optimum size of the sliding-window is based on ...This paper introduces a sliding-window mean removal high pass filter by which background clutter of infrared multispectral image is obtained. The method of selecting the optimum size of the sliding-window is based on the skewness-kurtosis test. In the end, a multivariate Gaussian distribution mathematical expression of background clutter image is given.展开更多
MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, in...MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.展开更多
To address the issues of unknown target size,blurred edges,background interference and low contrast in infrared small target detection,this paper proposes a method based on density peaks searching and weighted multi-f...To address the issues of unknown target size,blurred edges,background interference and low contrast in infrared small target detection,this paper proposes a method based on density peaks searching and weighted multi-feature local difference.Firstly,an improved high-boost filter is used for preprocessing to eliminate background clutter and high-brightness interference,thereby increasing the probability of capturing real targets in the density peak search.Secondly,a triple-layer window is used to extract features from the area surrounding candidate targets,addressing the uncertainty of small target sizes.By calculating multi-feature local differences between the triple-layer windows,the problems of blurred target edges and low contrast are resolved.To balance the contribution of different features,intra-class distance is used to calculate weights,achieving weighted fusion of multi-feature local differences to obtain the weighted multi-feature local differences of candidate targets.The real targets are then extracted using the interquartile range.Experiments on datasets such as SIRST and IRSTD-IK show that the proposed method is suitable for various complex types and demonstrates good robustness and detection performance.展开更多
文摘This paper introduces a sliding-window mean removal high pass filter by which background clutter of infrared multispectral image is obtained. The method of selecting the optimum size of the sliding-window is based on the skewness-kurtosis test. In the end, a multivariate Gaussian distribution mathematical expression of background clutter image is given.
文摘MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.
基金supported by the National Natural Science Foundation of China (No.52205548)。
文摘To address the issues of unknown target size,blurred edges,background interference and low contrast in infrared small target detection,this paper proposes a method based on density peaks searching and weighted multi-feature local difference.Firstly,an improved high-boost filter is used for preprocessing to eliminate background clutter and high-brightness interference,thereby increasing the probability of capturing real targets in the density peak search.Secondly,a triple-layer window is used to extract features from the area surrounding candidate targets,addressing the uncertainty of small target sizes.By calculating multi-feature local differences between the triple-layer windows,the problems of blurred target edges and low contrast are resolved.To balance the contribution of different features,intra-class distance is used to calculate weights,achieving weighted fusion of multi-feature local differences to obtain the weighted multi-feature local differences of candidate targets.The real targets are then extracted using the interquartile range.Experiments on datasets such as SIRST and IRSTD-IK show that the proposed method is suitable for various complex types and demonstrates good robustness and detection performance.