期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Meteorological Sensitivity Analysis of Kangbao Economic Development Zone
1
作者 Riyuan HAO Xinglu LI +4 位作者 Xue HU Haijiang ZHAO Lulu WANG Yuezhu HAO Fanhua MENG 《Meteorological and Environmental Research》 2025年第2期45-48,52,共5页
Kangbao County is located in the northwest of Bashang in Hebei Province,which is a sub-arid area in the middle temperate zone,with a cold and arid climate and frequent disastrous weather.The meteorological data of Kan... Kangbao County is located in the northwest of Bashang in Hebei Province,which is a sub-arid area in the middle temperate zone,with a cold and arid climate and frequent disastrous weather.The meteorological data of Kangbao County Meteorological Station from 1994 to 2023 were selected,and the meteorological elements such as air pressure,temperature,precipitation,wind,relative humidity,sunshine,thunderstorm,hail,gale,rainstorm,fog,and snow cover were counted.The climate background analysis and high-impact weather analysis were carried out in combination with the topographic characteristics,geographical location,and climate characteristics.The results of meteorological sensitivity survey in the park showed that industries such as food,agriculture and new energy are very sensitive to temperature.During the visit to the enterprises in the park,it was found that heavy precipitation,snow,strong winds and hail had a great impact on many industries,and it was recommended to carry out long-term planning and reasonable design of buildings.It should pay close attention to forecasts and early warnings,formulate emergency plans for high-impact weather defense,and actively take preventive measures. 展开更多
关键词 Climatic background analysis High-impact weather Sensitivity survey analysis Kangbao County
在线阅读 下载PDF
Performance analysis of ghost imaging lidar in background light environment 被引量:15
2
作者 CHENJIN DENG LONG PAN +3 位作者 CHENGLONG WANG XIN GAO WENLIN GONG SHENSHENG HAN 《Photonics Research》 SCIE EI 2017年第5期431-435,共5页
The effect of background light on the imaging quality of three typical ghost imaging(GI) lidar systems(namely narrow pulsed GI lidar, heterodyne GI lidar, and pulse-compression GI lidar via coherent detection) is inve... The effect of background light on the imaging quality of three typical ghost imaging(GI) lidar systems(namely narrow pulsed GI lidar, heterodyne GI lidar, and pulse-compression GI lidar via coherent detection) is investigated. By computing the signal-to-noise ratio(SNR) of fluctuation-correlation GI, our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar via coherent detection has the strongest capacity against background light, whereas the reconstruction quality of narrow pulsed GI lidar is the most vulnerable to background light. The relationship between the peak SNR of the reconstruction image andσ(namely, the signal power to background power ratio) for the three GI lidar systems is also presented, and theresults accord with the curve of SNR-σ. 展开更多
关键词 GI SNR Performance analysis of ghost imaging lidar in background light environment
原文传递
A Novel Divide and Conquer Solution for Long-term Video Salient Object Detection
3
作者 Yun-Xiao Li Cheng-Li-Zhao Chen +2 位作者 Shuai Li Ai-Min Hao Hong Qin 《Machine Intelligence Research》 EI CSCD 2024年第4期684-703,共20页
Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from th... Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from the given sequence.Although such a learning scheme is generally effective,it has a critical limitation,i.e.,the model learned on sparse frames only possesses weak generalization ability.This situation could become worse on“long”videos since they tend to have intensive scene variations.Moreover,in such videos,the keyframe information from a longer time span is less relevant to the previous,which could also cause learning conflict and deteriorate the model performance.Thus,the learning scheme is usually incapable of handling complex pattern modeling.To solve this problem,we propose a divide-and-conquer framework,which can convert a complex problem domain into multiple simple ones.First,we devise a novel background consistency analysis(BCA)which effectively divides the mined frames into disjoint groups.Then for each group,we assign an individual deep model on it to capture its key attribute during the fine-tuning phase.During the testing phase,we design a model-matching strategy,which could dynamically select the best-matched model from those fine-tuned ones to handle the given testing frame.Comprehensive experiments show that our method can adapt severe background appearance variation coupling with object movement and obtain robust saliency detection compared with the previous scheme and the state-of-the-art methods. 展开更多
关键词 Video salient object detection background consistency analysis weakly supervised learning long-term information background shift.
原文传递
Label fusion for segmentation via patch based on local weighted voting
4
作者 Kai ZHU Gang LIU +1 位作者 Long ZHAO Wan ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第5期680-688,共9页
Label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. However, satisfying the requirements of higher accuracy and less running time is always a great challeng... Label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. However, satisfying the requirements of higher accuracy and less running time is always a great challenge. In this paper we propose a novel patch-based segmentation method combining a local weighted voting strategy with Bayesian inference. Multiple atlases are registered to a target image by an advanced normalization tools(ANTs) algorithm. To obtain a segmentation of the target, labels of the atlas images are propagated to the target image. We first adopt intensity prior and label prior as two key metrics when implementing the local weighted voting scheme, and then compute the two priors at the patch level. Further, we analyze the label fusion procedure concerning the image background and take the image background as an isolated label when estimating the label prior. Finally, by taking the Dice score as a criterion to quantitatively assess the accuracy of segmentations, we compare the results with those of other methods, including joint fusion, majority voting, local weighted voting, majority voting based on patch, and the widely used Free Surfer whole-brain segmentation tool. It can be clearly seen that the proposed algorithm provides better results than the other methods. During the experiments, we make explorations about the influence of different parameters(including patch size, patch area, and the number of training subjects) on segmentation accuracy. 展开更多
关键词 Label fusion Local weighted voting Patch-based background analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部