期刊文献+
共找到7,519篇文章
< 1 2 250 >
每页显示 20 50 100
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型 被引量:1
1
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 bp神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
基于BP神经网络结合ERA5数据的风电功率预测 被引量:1
2
作者 王婷婷 李斯胜 +4 位作者 于伟 能锋田 李星南 杨佳琳 熊亮 《储能科学与技术》 北大核心 2025年第1期183-189,共7页
随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优... 随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。 展开更多
关键词 风力发电 bp神经网络 ERA5再分析资料 粒子群优化算法 风电功率预测
在线阅读 下载PDF
基于SA-BP神经网络的直线电机优化设计 被引量:1
3
作者 郭凯 李昊 +1 位作者 李彪 梁楠楠 《太原学院学报(自然科学版)》 2025年第2期45-52,共8页
针对永磁直线同步电机推力波动大、有限元仿真计算时间长等问题,提出了一种结合解析算法(SA)和BP神经网络算法的电机仿真优化模型:依据电机各部件的磁导率不同划分解析域,由解析算法算出电磁场分布等电机参数,利用解析获得的电机性能参... 针对永磁直线同步电机推力波动大、有限元仿真计算时间长等问题,提出了一种结合解析算法(SA)和BP神经网络算法的电机仿真优化模型:依据电机各部件的磁导率不同划分解析域,由解析算法算出电磁场分布等电机参数,利用解析获得的电机性能参数建立BP神经网络训练样本库,设计BP神经网络算法的训练周期、衰减率等参数后进行模型训练,拟合预测出电机尺寸参数与定位力之间的关系模型,最后利用多目标优化算法优化电机的尺寸参数。实验结果表明:基于SA-BP神经网络的电机模型的推力计算结果与有限元仿真结果的误差为2.35%,SA-BP神经网络算法不仅具有较高的计算精度,还能有效提升电机仿真计算速度。 展开更多
关键词 永磁直线同步电机 解析算法 bp神经网络算法 定位力 多目标优化算法
在线阅读 下载PDF
BP神经网络回归预测模型的改进 被引量:3
4
作者 何大四 金璐琪 +1 位作者 张祖铭 赵强强 《机械工程与自动化》 2025年第1期224-226,共3页
为了优化BP神经网络,提出了一种优化BP神经网络的流程。首先,判断各影响因素之间的自相关性,如果各影响因素满足自相关评价指标,则可以使用BP神经网络进行回归训练;其次,改变BP神经网络的隐藏节点数、学习效率、训练误差和训练次数等影... 为了优化BP神经网络,提出了一种优化BP神经网络的流程。首先,判断各影响因素之间的自相关性,如果各影响因素满足自相关评价指标,则可以使用BP神经网络进行回归训练;其次,改变BP神经网络的隐藏节点数、学习效率、训练误差和训练次数等影响因素;最后,加入遗传算法或者粒子群算法与BP神经网络组成混合算法,以提高BP神经网络的训练精度。 展开更多
关键词 bp神经网络 隐藏节点 混合算法 回归预测 自相关性
在线阅读 下载PDF
改进SSA优化BP神经网络的变压器故障诊断 被引量:2
5
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 bp神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
在线阅读 下载PDF
一种基于GA-BP神经网络的冷库能耗预测 被引量:1
6
作者 王雅博 陈君豪 +1 位作者 刘兴华 张行健 《冷藏技术》 2025年第1期79-85,75,共8页
影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建... 影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建基于GA-BP神经网络的冷库能耗模型。结果表明,在缺失货物信息的情况下,使用冷库当天使用面积作为输入变量能够保证模型具有高准确率,R2达到0.9563,并且性能优于BP神经网络、多元回归模型。 展开更多
关键词 能耗预测 特征选择 遗传算法 bp神经网络 机器学习
原文传递
基于蜣螂优化BP-PID的温室自主跟随平台行走速度控制研究 被引量:1
7
作者 肖茂华 陈泰 +3 位作者 庄晓华 朱烨均 胡艺缤 王鸿翔 《农业机械学报》 北大核心 2025年第2期83-91,154,共10页
针对当前温室作业环境复杂、现有机械行走稳定性差的问题,本文提出了温室自主跟随电动平台行走速度控制方法。由于该系统存在非线性和时变性的特点,传统PID控制算法无法实现有效控制,因此提出了一种基于蜣螂(Dung beetle optimizer,DBO... 针对当前温室作业环境复杂、现有机械行走稳定性差的问题,本文提出了温室自主跟随电动平台行走速度控制方法。由于该系统存在非线性和时变性的特点,传统PID控制算法无法实现有效控制,因此提出了一种基于蜣螂(Dung beetle optimizer,DBO)优化BP神经网络PID控制算法。该算法采用DBO优化算法对BP神经网络的权值进行优化,加快了BP神经网络的自学习速率,实现对温室自主跟随电动平台行走速度的快速精确控制,提高系统的响应速度并降低超调量,最后,将本文提出的行走速度控制算法与PID控制算法、BP-PID控制算法、遗传算法(Genetic algorithm,GA)优化PID控制算法、蚁群算法(Ant colony optimization,ACO)优化PID控制算法对比。试验结果表明,当行走速度为1 m/s时,系统平均响应速度为0.11 s,调整时间为0.27 s,最大超调量为2.44%;当履带线速度大小和方向发生变化时,系统依然表现出响应速度快、超调量小且稳态过程无振荡的优点。DBO-BP-PID控制算法在控制稳定性和控制精度上表现更优,有效降低了系统时滞性和非线性影响,满足温室自主跟随电动平台行走速度控制的需求。 展开更多
关键词 温室 自主跟随电动平台 行走速度控制 蜣螂优化算法 bp-PID控制
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
8
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 bp神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
基于BPNN-EKF-GD-RF算法的锂离子电池组荷电状态估计方法
9
作者 来鑫 翁嘉辉 +4 位作者 杨一鹏 孙宇飞 周龙 郑岳久 韩雪冰 《机械工程学报》 北大核心 2025年第12期251-265,共15页
锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难... 锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难。提出一种将BP神经网络(Back propagation neural network, BPNN)与扩展卡尔曼滤波(Extended Kalman filter, EKF)算法相结合的电池组SOC估计方法。该方法首先基于先验SOC利用BPNN估计不同温度下“领导者”电池的端电压,将其与实测端电压对比后采用EKF算法完成SOC后验估计,同时基于电压差采用梯度下降(Gradient descent, GD)算法更新BPNN的输出层权重使算法更快收敛。在此基础上,设计修正策略利用随机森林(Random forest, RF)算法对“跟随者”电池的SOC进行调整估计。试验结果表明,所提的BPNN-EKF-GD-RF算法能实现电池组在不同温度下SOC的准确估计,常温下SOC估计误差保持在2.5%以内,在温度变化下电池组中单体电池SOC估计最大误差不超过3.2%,为复杂环境下锂离子电池组的SOC估计提供了一种高精度低复杂度方案。 展开更多
关键词 SOC估计 bp神经网络 扩展卡尔曼滤波 梯度下降算法 随机森林 锂离子电池组
原文传递
基于遗传算法与BP神经网络的通风机智能监控系统 被引量:1
10
作者 方志伟 《工业仪表与自动化装置》 2025年第3期45-50,共6页
煤矿通风机是保证煤矿安全生产的重要大型设备,提高其自动化、智能化水平意义重大。当前多数煤矿井下通风机工作时长期处于恒速运转模式,能耗消耗巨大。为了克服通风机工作中一风吹的状态,使其根据实际需要智能调风、按需供风、节能减耗... 煤矿通风机是保证煤矿安全生产的重要大型设备,提高其自动化、智能化水平意义重大。当前多数煤矿井下通风机工作时长期处于恒速运转模式,能耗消耗巨大。为了克服通风机工作中一风吹的状态,使其根据实际需要智能调风、按需供风、节能减耗,根据煤矿井下温湿度、瓦斯浓度及煤尘浓度实际情况,运用遗传算法与BP神经网络相结合的控制方法,构建了预测井下需风量的网络模型;使用MATLAB软件对遗传算法优化的BP神经网络风量预测效果进行了测试。结果显示,系统预测准确率高,达到理想效果。通过工控机、PLC、变频器及各类传感器等相关硬件以及软件技术,设计完成了通风机智能监控系统,使通风机智能按需调节风量,提高了通风机自动化、智能化控制水平。 展开更多
关键词 通风机 煤矿 遗传算法 bp神经网络 智能监控系统
在线阅读 下载PDF
彬长矿区煤层采动导水裂隙带高度RF-BP模型预测对比研究
11
作者 姬亚东 刘譞 +5 位作者 朱开鹏 赵春虎 李凯 袁晨瀚 李盼盼 闫鹏珍 《煤矿安全》 北大核心 2025年第7期175-184,共10页
西部黄陇侏罗系煤田煤层赋存条件一般较厚,其中彬长矿区煤层厚度平均大于5 m,最厚可达14 m,且常采用综放开采工艺,造成煤层顶板导水裂隙带发育厚度大且发育规律不明,矿井涌水量居高不下,严重影响矿区安全生产。为研究彬长矿区煤矿工作... 西部黄陇侏罗系煤田煤层赋存条件一般较厚,其中彬长矿区煤层厚度平均大于5 m,最厚可达14 m,且常采用综放开采工艺,造成煤层顶板导水裂隙带发育厚度大且发育规律不明,矿井涌水量居高不下,严重影响矿区安全生产。为研究彬长矿区煤矿工作面开采扰动覆岩而导致的煤层顶板导水裂隙带发育高度,优选了煤层开采厚度、煤层埋深、顶板覆岩岩性、顶板构造特征、开采速度、工作面长度、采煤工艺等7个影响因素,通过AHP层次分析法分别计算出了上述各影响因素的权重,发现煤层开采厚度、工作面长度2个影响因素所占权重相对较大;通过Matlab对搜集的数据进行插值,使数据分布更为平滑;通过反向传播神经网络(BP)、遗传算法优化神经网络(GA-BP)、粒子群优化算法优化神经网络(PSO-BP)、随机森林(RF)算法对插值后数据进行回归拟合。研究发现,4种方法对原始数据的拟合效果都较好,其中随机森林RF相对其他模型对原始数据的拟合具有更高的准确度,训练集和测试集的均方根误差RMSE分别为0.037 41和0.055 16,决定系数R2分别为0.987 37和0.957 89。研究结果可为彬长矿区煤矿开采导水裂隙带发育高度的预测提供一定的参考。 展开更多
关键词 导水裂隙带 煤矿智能化 随机森林算法 bp神经网络 矿井涌水
在线阅读 下载PDF
基于WOA-BP神经网络的热式流量测量技术研究
12
作者 刘升虎 刘太逸 +3 位作者 冉建立 郭会强 邢亚敏 梁钊睿 《仪表技术与传感器》 北大核心 2025年第4期50-54,共5页
针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的... 针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的补偿模型,提高了算法的收敛速度。实验结果表明:优化后的神经网络模型在热式流量测量方法中具有较好的流量预测效果,WOA-BP网络模型R~2达到0.989,比传统BP模型的预测精确性和鲁棒性更高,在对油井产液量预测方面具有实用价值。 展开更多
关键词 鲸鱼优化算法(WOA) bp神经网络 热式流量测量方法 温度补偿
在线阅读 下载PDF
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
13
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 bp神经网络代理模型 NSGA-Ⅱ算法
在线阅读 下载PDF
基于I-GWO-BP神经网络的矿区爆破振动预测
14
作者 徐敏 林卫星 +5 位作者 石磊 欧任泽 于振建 龚永超 胡力可 胡军生 《矿业研究与开发》 北大核心 2025年第10期121-128,共8页
针对现有爆破振动速度预测公式在面对复杂地场环境时预测精度不高的问题,提出一种基于改进灰狼优化算法(I-GWO)的BP神经网络模型。通过改变神经网络收敛因子函数加强导优精度,混沌映射初始化狼群位置加快求解速度,基于步长欧式距离的比... 针对现有爆破振动速度预测公式在面对复杂地场环境时预测精度不高的问题,提出一种基于改进灰狼优化算法(I-GWO)的BP神经网络模型。通过改变神经网络收敛因子函数加强导优精度,混沌映射初始化狼群位置加快求解速度,基于步长欧式距离的比例权重动态调整权重、提升寻优效率来改进灰狼算法。结合李楼-吴集铁矿爆破振动速度监测数据,选取爆心距、最大单段装药量、总装药量作为输入参数建立I-GWO-BP模型。结果表明:I-GWO-BP模型的收敛速度以及收敛精度要优于GWO-BP模型及BP模型,优化效果明显;I-GWO-BP模型的预测值基本处于实测值±0.08 cm/s置信带内,平均绝对百分比误差为13.84%,预测效果显著优于其他预测方法,具有较高的预测精度。研究成果可为矿山的爆破振动速度预测提供一定的参考。 展开更多
关键词 爆破振动速度 bp神经网络 改进灰狼优化算法 预测模型 预测精度
原文传递
基于BP神经网络的扁平钢箱梁涡振性能预测
15
作者 白桦 杨光 +2 位作者 杨鹏瑞 杨鑫 高广中 《东南大学学报(自然科学版)》 北大核心 2025年第5期1388-1398,共11页
以大跨桥梁常用的扁平钢箱梁为研究对象,通过风洞试验和数值模拟建立了扁平钢箱梁断面在不同动力特性和气动外形下的扭转涡振响应数据库。利用建立的数据库训练了BP神经网络,提出了确定最佳隐含层节点数的方法,并利用交叉验证和遗传算法... 以大跨桥梁常用的扁平钢箱梁为研究对象,通过风洞试验和数值模拟建立了扁平钢箱梁断面在不同动力特性和气动外形下的扭转涡振响应数据库。利用建立的数据库训练了BP神经网络,提出了确定最佳隐含层节点数的方法,并利用交叉验证和遗传算法对BP神经网络的初始权值及阈值进行优化,预测扁平钢箱梁断面的扭转涡振性能。结果表明,利用遗传算法优化后的BP神经网络可以有效预测扁平钢箱梁断面的涡振特性,随机抽取的2个样本预测平均相对误差为8.18%。参数分析表明,扁平钢箱梁断面的腹板角度越小,箱梁断面越趋近于流线型,扭转涡振响应越小。扁平钢箱梁断面增加风嘴后可以减小扭转涡振响应,然而风嘴角度越大,扭转涡振响应越大。 展开更多
关键词 扁平钢箱梁 涡振 bp神经网络 遗传算法 交叉验证
在线阅读 下载PDF
基于DBO-BP神经网络的活动导叶磨蚀预测模型
16
作者 陈小翠 姬中瑞 +1 位作者 郑源 陈文杰 《华中科技大学学报(自然科学版)》 北大核心 2025年第7期115-121,共7页
为高效预测混流式水轮机活动导叶的磨蚀情况,基于高速加沙实验数据,进行复合树脂砂浆涂层材料的磨蚀模型拟合.基于该磨蚀模型,在Fluent平台上通过用户自定义函数(UDF)进行编译,实现活动导叶在不同工况下的磨蚀仿真分析.在活动导叶磨蚀... 为高效预测混流式水轮机活动导叶的磨蚀情况,基于高速加沙实验数据,进行复合树脂砂浆涂层材料的磨蚀模型拟合.基于该磨蚀模型,在Fluent平台上通过用户自定义函数(UDF)进行编译,实现活动导叶在不同工况下的磨蚀仿真分析.在活动导叶磨蚀分析的基础上,基于蜣螂优化算法优化的BP神经网络,提出了一种新型高效的磨蚀预测模型,通过流量、流道中颗粒浓度及当前磨蚀量等参数来进行未来磨蚀量的预测,同时与普通BP神经网络的预测模型进行对比.结果表明:蜣螂优化算法使BP神经网络的均方根误差降低了40%以上,平均绝对误差降低了60%,提高了BP神经网络的计算精度. 展开更多
关键词 磨蚀模型 蜣螂优化算法 bp神经网络 活动导叶 复合树脂砂浆涂层
原文传递
基于IDBO-BP算法的覆冰状态输电塔应力与位移预测模型
17
作者 王彦海 李恩阳 +3 位作者 苗红璞 石习双 李书炀 周冬阳 《燕山大学学报》 北大核心 2025年第3期207-218,共12页
输电塔受大风和覆冰的作用极易发生塔材变形、塔身倾斜甚至倒塔现象,建立极端天气下输电塔状态预测模型,可以预判塔身关键部位受力和整体倾斜的变化趋势。本文提出一种基于IDBO-BP算法的覆冰状态输电塔应力与位移预测模型,首先利用Singe... 输电塔受大风和覆冰的作用极易发生塔材变形、塔身倾斜甚至倒塔现象,建立极端天气下输电塔状态预测模型,可以预判塔身关键部位受力和整体倾斜的变化趋势。本文提出一种基于IDBO-BP算法的覆冰状态输电塔应力与位移预测模型,首先利用Singer混沌映射与可变螺旋搜索策略对蜣螂优化算法进行优化,然后利用改进的蜣螂优化算法对BP神经网络的权值和阈值进行优化,得到覆冰状态下输电塔应力与位移预测模型;其次,采用有限元仿真计算,得到不同工况下输电塔的状态响应;最后,结合预测模型与仿真结果得到覆冰状态输电塔关键部位应力和塔头位移的预测值。结果表明:文中提出的IDBO-BP较DBO-BP绝对平均误差下降了62.9%,平均相对误差下降了58.1%,均方根误差下降了60.2%,为覆冰状态下的输电塔自身杆件状态的安全性预测提供参考。 展开更多
关键词 输电塔 bp神经网络 覆冰 改进蜣螂算法
在线阅读 下载PDF
基于改进灰狼算法优化BP神经网络的RSS指纹定位
18
作者 刘伟 李艾龙 +1 位作者 李卓 王智豪 《电子测量技术》 北大核心 2025年第14期162-175,共14页
室内定位技术,特别是基于接收信号强度(RSSI)的指纹定位方法,因其成本低廉、设备支持广泛、易于部署、计算开销小等特点,受到了广泛关注。为了增强RSSI与实际物理距离之间的映射关系并提高测距精度,本文提出了一种基于改进灰狼优化(IGWO... 室内定位技术,特别是基于接收信号强度(RSSI)的指纹定位方法,因其成本低廉、设备支持广泛、易于部署、计算开销小等特点,受到了广泛关注。为了增强RSSI与实际物理距离之间的映射关系并提高测距精度,本文提出了一种基于改进灰狼优化(IGWO)算法与反向传播神经网络(BPNN)结合的RSSI测距算法。与遗传算法(GA)、粒子群算法(PSO)和经典灰狼优化算法(GWO)相比,改进的GWO算法在定位精度和全局搜索能力方面具有显著优势。通过实验,本文提出的IGWO算法在均方根误差RMSE上相比GWO算法、GA算法、PSO算法分别减少了21.3%、15.7%、14.6%,IGWO算法表现出了较好的定位性能,在精度和性能上均优于传统方法。 展开更多
关键词 室内定位 RSSI测距 bp神经网络 灰狼算法 粒子群算法
原文传递
基于BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型研究
19
作者 赵锐 田志强 宋宇涵 《世界桥梁》 北大核心 2025年第5期97-104,共8页
为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作... 为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作为安全风险评估体系中的底层指标,构建安全风险评估指标体系;然后,采用BWM法和德尔菲法,利用专家经验确定病害层指标权重,结合模糊综合评判法对桥梁检测样本数据进行前处理;最后,利用BP神经网络对处理后的样本进行训练,根据训练结果,分别用遗传算法(GA)和粒子群算法(PSO)对BP神经网络优化后对比,构建最优评估模型。将该评估模型应用于墩那高速新疆伊犁州某段某中桥,对其进行安全风险评估,以验证其适用性。结果表明:运用BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型在一定程度上克服了检测报告样本中评价不准确和局限问题,同时削弱了BP神经网络训练大量样本的需求;GA优化的BP神经网络模型比PSO优化精度更佳、鲁棒性更好,准确率达96.49%;相比现行规范,运用该模型进行在役中小跨径桥梁安全风险评估,能改善病害叠加评分过低的问题,评估结果更符合实际情况。 展开更多
关键词 中小跨径桥梁 最优最劣法 bp神经网络 遗传算法 粒子群算法 智能评估模型 安全风险评估
在线阅读 下载PDF
基于BP-SSA算法的大学生体质健康水平评价模型研究
20
作者 赵莹 《合肥师范学院学报》 2025年第5期171-174,180,共5页
随着经济和社会的不断发展,大学生体质的培养受到了广泛的关注。然而,传统的身体素质评价方法存在一些不足,如评价指标单一,评价结果不准确等。针对这一问题,研究提出利用误差反向传播算法与麻雀搜索算法,构建一种大学生体质健康水平评... 随着经济和社会的不断发展,大学生体质的培养受到了广泛的关注。然而,传统的身体素质评价方法存在一些不足,如评价指标单一,评价结果不准确等。针对这一问题,研究提出利用误差反向传播算法与麻雀搜索算法,构建一种大学生体质健康水平评价模型。经过对比试验,结果表明,该算法的准确率最高可达到96%,优于对比算法。研究提出的大学生体质健康水平评价模型的F值与G值分别为86%、92%,优于对比模型。综上,研究提出的基于改进麻雀算法的大学生体质健康水平评价模型,能够有效地提高我国大学生体质健康评估的准确率和工作效率。 展开更多
关键词 bp算法 SSA算法 大学生体质 评价模型
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部