期刊文献+
共找到798,218篇文章
< 1 2 250 >
每页显示 20 50 100
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
1
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS Electromagnetic propagation logging forward modeling Finite element method Residual neural networks
在线阅读 下载PDF
Conformal Geometric Algebra-based Forward Kinematics Analysis Method for the(2-SPR+RPS)+(3-SPR)Serial-Parallel Hybrid Mechanism
2
作者 Zhonghai Zhang Dongyang Zhu Duanling Li 《Chinese Journal of Mechanical Engineering》 2025年第4期535-550,共16页
Parallel mechanisms with fewer degrees of freedom that incorporate two or more SPR limbs have been widely adopted in industrial applications in recent years.However,notable theoretical gaps persist,particularly in the... Parallel mechanisms with fewer degrees of freedom that incorporate two or more SPR limbs have been widely adopted in industrial applications in recent years.However,notable theoretical gaps persist,particularly in the field of analytical solutions for forward kinematics.To address this,this paper proposes an innovative forward kinematics analysis method based on Conformal Geometric Algebra(CGA)for complex hybrid mechanisms formed by serial concatenation of such parallel mechanisms.The method efficiently represents geometric elements and their operational relationships by defining appropriate unknown parameters.It constructs fundamental geometric objects such as spheres and planes,derives vertex expressions through intersection and dual operations,and establishes univariate high-order equations via inner product operations,ultimately obtaining complete analytical solutions for the forward kinematics of hybrid mechanisms.Using the(2-SPR+RPS)+(3-SPR)serial-parallel hybrid mechanism as a validation case,three configuration tests implemented in Mathematica demonstrate that:for each configuration,the upper 3-SPR mechanism yields 15 mathematical solutions,while the lower 2-SPR+RPS mechanism yields 4 mathematical solutions.After geometric constraint filtering,a unique physically valid solution is obtained for each mechanism.SolidWorks simulations further verify the correctness and reliability of the model.This research provides a reliable analytical method for forward kinematics of hybrid mechanisms,holding significant implications for advancing their applications in high-precision scenarios. 展开更多
关键词 Conformal geometric algebra Serial-parallel hybrid mechanism SPR limbs forward kinematics analysis Superposition principle
在线阅读 下载PDF
Fast Forward Modeling of Resistivity Method under Complex Topography Using Finite Element Method
3
作者 Wang Zhan Li Chang-Wei +3 位作者 Lv Yu-Zeng Luo Run-Lin Cheng Bo Li Bo 《Applied Geophysics》 2025年第4期1271-1283,1498,共14页
A parallel finite element scheme for 3D resistivity method forward modeling is introduced in this article.The domain decomposition algorithm,along with a message passing interface,is used to implement parallelism.The ... A parallel finite element scheme for 3D resistivity method forward modeling is introduced in this article.The domain decomposition algorithm,along with a message passing interface,is used to implement parallelism.The computational domain is divided into subdomains,and mesh partitioning is combined with load balancing.Unstructured meshes and local mesh refinement strategies are used to realize high precision for complex topography models.Furthermore,an improved linear solver for multi-electrode resistivity method modeling is adopted.Recycling preconditioned conjugate gradient,which is a linear solver,is based on the similarity of linear systems between point sources.The multiple right-hand-side linear systems corresponding to different point source positions are constructed,and the accelerated convergence is obtained through recycling subspace using the linear solver.The computational accuracy and efficiency of the forward scheme for complex topography models are verified using the numerical test results. 展开更多
关键词 resistivity method parallel computing multiple linear systems recycling Krylov subspace
在线阅读 下载PDF
A straightforward 3D polycrystal plasticity finite element method for dynamic/static recrystallization simulation
4
作者 Guowei Zhou Yuanzhe Hu +2 位作者 Ronghui Hu Peidong Wu Dayong Li 《Journal of Materials Science & Technology》 2025年第17期180-198,共19页
The microstructure and related property evolution induced by dynamic recrystallization(DRX)and static recrystallization(SRX)in thermo-mechanical process are two critical factors for the metal forming.The DRX and SRX a... The microstructure and related property evolution induced by dynamic recrystallization(DRX)and static recrystallization(SRX)in thermo-mechanical process are two critical factors for the metal forming.The DRX and SRX are determined by the grain level deformation and sequentially coupled.In order to fully capture the microstructure and mechanical property evolution,a crystal plasticity finite element based modelling method for DRX and SRX is proposed in the current work.The grain level deformation is calculated with crystal plasticity which is coupled with the recrystallization model straightforwardly,and both the grain deformation and microstructure evolution are updated simultaneously.The proposed method is validated with discontinuous DRX experiments and the effects of initial deformation conditions are well-captured.Two controversial mechanisms for recrystallization microstructure evolution,i.e.oriented nucleation and growth selection,are discussed in the current framework with the advantages of accurate grain level deformation and interaction predictions.Furthermore,the sequentially coupled DRX and SRX are modelled seamlessly in the current work which provides a critical method for fully integrated thermo-mechanical processes analysis. 展开更多
关键词 Dynamic recrystallization Static recrystallization Crystal plasticity finite element method MICROSTRUCTURE Growth selection
原文传递
A New Inversion-free Iterative Method for Solving the Nonlinear Matrix Equation and Its Application in Optimal Control
5
作者 GAO Xiangyu XIE Weiwei ZHANG Lina 《应用数学》 北大核心 2026年第1期143-150,共8页
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ... In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 Nonlinear matrix equation Maximal positive definite solution Inversion-free iterative method Optimal control
在线阅读 下载PDF
Centralized Circumcentered-Reection Method for Solving the Convex Feasibility Problem in Sparse Signal Recovery
6
作者 Chunmei LI Bangjun CHEN Xuefeng DUAN 《Journal of Mathematical Research with Applications》 2026年第1期119-133,共15页
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery... Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods. 展开更多
关键词 convex feasibility problem centralized circumcentered-re ection method sparse signal recovery compressed sensing
原文传递
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
7
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Forward modeling of marine DC resistivity method for a layered anisotropic earth 被引量:2
8
作者 殷长春 张平 蔡晶 《Applied Geophysics》 SCIE CSCD 2016年第2期279-287,417,共10页
Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic mo... Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallowwater areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling. 展开更多
关键词 Electrical anisotropy Marine DC resistivity method forward modeling Field continuation algorithm
在线阅读 下载PDF
Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method 被引量:5
9
作者 陈辉 邓居智 +2 位作者 尹敏 殷长春 汤文武 《Applied Geophysics》 SCIE CSCD 2017年第1期154-164,192,共12页
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondar... To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity. 展开更多
关键词 AGMG DC resistivity method 3D modeling finite difference method
在线阅读 下载PDF
Improvedforward—lookingimagingmethodforairbornearrayFMCWSAR 被引量:6
10
作者 侯海平 曲长文 +1 位作者 杨俭 苏峰 《电波科学学报》 EI CSCD 北大核心 2011年第5期944-950,共7页
机载阵列前视合成孔径雷达(SAR)信号模型中忽略载机速度会影响成像。针对该问题,在调频连续波(FMCW)SAR信号模型中考虑了载机速度,分析了栽机速度的影响和裁机连续运动引入的多普勒频率偏移的特点,结合FrequencyScaling算法,研... 机载阵列前视合成孔径雷达(SAR)信号模型中忽略载机速度会影响成像。针对该问题,在调频连续波(FMCW)SAR信号模型中考虑了载机速度,分析了栽机速度的影响和裁机连续运动引入的多普勒频率偏移的特点,结合FrequencyScaling算法,研究了机载阵列FMCWSAR前视成像。成像仿真和性能参数分析表明:改进方法可精确实现载机运动条件下的FMCWSAR前视成像。 展开更多
关键词 SCALING算法 成像仿真 合成孔径雷达 信号模型 连续运动 调频连续波 频率偏移 性能参数
在线阅读 下载PDF
Precision of meshfree methods and application to forward modeling of two-dimensional electromagnetic sources 被引量:2
11
作者 李俊杰 严家斌 皇祥宇 《Applied Geophysics》 SCIE CSCD 2015年第4期503-515,627,共14页
Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as eleme... Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as element-free Galerkin method (EFGM), the point interpolation method (PIM), and the radial point interpolation method (RPIM). Taking two dimensional Poisson equation as an example, we discuss the support-domain dimensionless size, the field nodes, and background element settings with respect to their effect on calculation accuracy of the meshfree method. RPIM and EFGM are applied to controlled- source two-dimensional electromagnetic modeling with fixed shape parameters. The accuracy of boundary conditions imposed directly and by a penalty function are discussed in the case of forward modeling of two-dimensional magnetotellurics in a homogeneous medium model. The coupling algorithm of EFG-PIM and EFG-RPIM are generated by integrating the PIM or RPIM and EFGM. The results of the numerical modeling suggest the following. First, the proposed meshfree method and corresponding coupled methods are well-suited for electromagnetic numerical modeling. The accuracy of the algorithm is the highest when the support-domain dimensionless size is 1.0 and the distribution of field nodes is consistent with the nodes of background elements. Second, the accuracy of PIM and RPIM are lower than that of EFGM for the Poisson equation but higher than EFGM for the homogeneous medium MT response. Third, RPIM overcomes the matrix inversion problem of PIM and has a wider selection of support-domain dimensionless sizes as compared to RPIM. 展开更多
关键词 Element-free Galerkin method point-interpolation method radial pointinterpolation method Poisson equation controlled-source electromagnetic modeling coupled meshfree method
在线阅读 下载PDF
3D elastic wave equation forward modeling based on the precise integration method 被引量:1
12
作者 段玉婷 胡天跃 +1 位作者 姚逢昌 张研 《Applied Geophysics》 SCIE CSCD 2013年第1期71-78,118,119,共10页
The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data... The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data. However, because of its discretization, the FD method is only stable under certain conditions. The Arbitrary Difference Precise Integration (ADPI) method is based on the FD method and adopts an integration scheme in the time domain and an arbitrary difference scheme in the space domain. Therefore, the ADPI method is a semi-analytical method. In this paper, we deduce the formula for the ADPI method based on the 3D elastic equation and improve its stability. In forward modeling cases, the ADPI method was implemented in 2D and 3D elastic wave equation forward modeling. Results show that the travel time of the reflected seismic wave is accurate. Compared with the acoustic wave field, the elastic wave field contains more wave types, including PS- and PP- reflected waves, transmitted waves, and diffracted waves, which is important to interpretation of seismic data. The method can be easily applied to elastic wave equation numerical simulations for eoloical models. 展开更多
关键词 Arbitrary difference precise integration method elastic waves wave equation seismic numerical simulation
在线阅读 下载PDF
Forward Calculation of 2-D and 3-D Structures with a Cover by the Boundary Element Method while Using Electrical Methods 被引量:6
13
作者 Fu Liangkui Chen FujiDepartment of Geophysics, China University of Geosciences, Beijing 100083 《Journal of Earth Science》 SCIE CAS CSCD 1990年第1期87-96,共10页
This paper develops the boundary element method, the authors employ two-layered earth Green 's functions as the weighting functions of residual and derive boundary integral equations. The forward problems of point... This paper develops the boundary element method, the authors employ two-layered earth Green 's functions as the weighting functions of residual and derive boundary integral equations. The forward problems of point sources on 2 - D and 3-D structures with an influencing cover are solved by this method. The results show that this method markedly improves the original boundary element method. The features of the improved method are greater numerical accuracy and much smaller systems of equations and thus considerable savings for the storage capacity of computers, allowing us to solve the above problems with only ordinary microcomputers. The results in this paper extend the scope of applying the boundary element method while using electrical methods for geophysical prospecting. 展开更多
关键词 boundary element Green's function COVER forward calculation
在线阅读 下载PDF
Irregular surface seismic forward modeling by a body-fitted rotated–staggered-grid finite-difference method 被引量:5
14
作者 Cheng Jing-Wang Fan Na +1 位作者 Zhang You-Yuan Lü Xiao-Chun 《Applied Geophysics》 SCIE CSCD 2018年第3期420-431,共12页
Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transfo... Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest. 展开更多
关键词 FINITE DIFFERENCE forward modeling GRID staggered rotated body-fitted SURFACE free BOUNDARY
在线阅读 下载PDF
Forward kinematics analysis of parallel manipulator using modified global Newton-Raphson method 被引量:23
15
作者 杨炽夫 郑淑涛 +2 位作者 靳军 朱思斌 韩俊伟 《Journal of Central South University》 SCIE EI CAS 2010年第6期1264-1270,共7页
In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) p... In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) parallel manipulator.Based on geometrical frame of parallel manipulator,the highly nonlinear equations of kinematics were derived using analytical approach.The MGNR algorithm was developed for the nonlinear equations based on Tailor expansion and Newton-Raphson iteration.The procedure of MGNR algorithm was programmed in Matlab/Simulink and compiled to a real-time computer with Microsoft visual studio.NET for implementation.The performance of the MGNR algorithms for 6-DOF parallel manipulator was analyzed and confirmed.Applying the MGNR algorithm,the real generalized pose of moving platform is solved by using the set of given positions of actuators.The theoretical analysis and numerical results indicate that the presented method can achieve the numerical convergent solution in less than 1 ms with high accuracy(1×10-9 m in linear motion and 1×10-9 rad in angular motion),even the initial guess value is far from the root. 展开更多
关键词 parallel manipulator forward kinematics global Newton-Raphson real-time system
在线阅读 下载PDF
Solution of scattering from rough surface with a 2D target above it by a hybrid method based on the reciprocity theorem and the forward-backward method 被引量:4
16
作者 王运华 张彦敏 +1 位作者 贺明霞 郭立新 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第10期3696-3703,共8页
This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, th... This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface. 展开更多
关键词 forward-backward method reciprocity theorem 2D target rough surface SCATTERING
原文传递
Three-dimensional forward modeling for the SBTEM method using an unstructured fi nite-element method 被引量:3
17
作者 Wang Lu-Yuan Yin Chang-Chun +5 位作者 Liu Yun-He Su Yang Ren Xiu-Yan Hui Zhe-Jian Zhang Bo Xiong Bin 《Applied Geophysics》 SCIE CSCD 2021年第1期101-116,130,共17页
In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteri... In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteristics of SBTEM responses for complex geoelectrical models.To solve the double-curl diff usion equation for the electric fi eld,we use an unstructured tetrahedral mesh to discretize the model domain and select the unconditionally stable backward Euler scheme to discretize the time derivative.In our numerical experiments,we use a grounded wire as a transmitting source.After validating the algorithm’s eff ectiveness,we first analyze the diffusion characteristics and detectability of the electromagnetic field.After that,we focus our attention on the distribution and the cause of zero bands for Ex and dBy/dt components with the hope of guiding future field surveys.Finally,by simulating diff erent models,we analyze the capability of the SBTEM method in detecting typical mineral veins so that we can provide a reference for mineral resource exploration in the deep earth. 展开更多
关键词 Surface-to-borehole TEM forward modeling edge-based FE method unstructured grids zero bands
在线阅读 下载PDF
A Modified Back/Forward Sweep Method Based on the Electricity Consumption Data 被引量:1
18
作者 Yanlu Huang Yan Li +2 位作者 Feng Chen Xu Zheng Jing Tang 《Energy and Power Engineering》 2017年第4期176-182,共7页
With the development of distribution automation system, the centralized meter reading system has been adopted more and more extensively, which provides real-time electricity consumption data of end-users, and conseque... With the development of distribution automation system, the centralized meter reading system has been adopted more and more extensively, which provides real-time electricity consumption data of end-users, and consequently lays foundation for operating condition on-line analysis of distribution network. In this paper, a modified back/forward sweep method, which directly uses real-time electricity consumption data acquired from the centralized meter reading system, is proposedto realize voltage analysis based on 24-hour electricity consumption data of a typical transformer district. Furthermore, the calculated line losses are verified through data collected from the energy metering of the distribution transformer, illustrating that the proposed method can be applied in analyzing voltage level and discovering unknown energy losses, which will lay foundation for on-line analysis, calculation and monitoring of power distribution network. 展开更多
关键词 LOW-VOLTAGE Distribution Network back/forward SWEEP method ELECTRICITY CONSUMPTION DATA On-Line Analysis and Calculation
在线阅读 下载PDF
Three-dimensional forward modeling for magnetotelluric sounding by finite element method 被引量:3
19
作者 童孝忠 柳建新 +3 位作者 谢维 徐凌华 郭荣文 程云涛 《Journal of Central South University》 SCIE EI CAS 2009年第1期136-142,共7页
A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forwar... A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances. 展开更多
关键词 magnetotelluric sounding three-dimensional forward modeling finite element method general variation principle divergence condition
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部