期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Automatic detection method of bladder tumor cells based on color and shape features
1
作者 Zitong Zhao Yanbo Wang +6 位作者 Jiaqi Chen Mingjia Wang Shulong Feng Jin Yang Nan Song Jinyu Wang Ci Sun 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第6期1-13,共13页
Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology ... Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology has provided a new tool for the auxiliary diagnosis of bladder cancer.In this study,based on microscopic hyperspectral data,an automatic detection algorithm of bladder tumor cells combining color features and shape features is proposed.Support vector machine(SVM)is used to build classification models and compare the classification performance of spectral feature,spectral and shape fusion feature,and the fusion feature proposed in this paper on the same classifier.The results show that the sensitivity,specificity,and accuracy of our classification algorithm based on shape and color fusion features are 0.952,0.897,and 0.920,respectively,which are better than the classification algorithm only using spectral features.Therefore,this study can effectively extract the cell features of bladder urothelial carcinoma smear,thus achieving automatic,real-time,and noninvasive detection of bladder tumor cells,and then helping doctors improve the efficiency of pathological diagnosis of bladder urothelial cancer,and providing a reliable basis for doctors to choose treatment plans and judge the prognosis of the disease. 展开更多
关键词 Bladder tumor cells microscopic hyperspectral fusion feature support vector machine automatic detection.
原文传递
An automatic detection of green tide using multi-windows with their adaptive threshold from Landsat TM/ETM plus image 被引量:4
2
作者 WANG Changying CHU Jialan +3 位作者 TAN Meng SHAO Fengjing SUI Yi LI Shujing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期106-114,共9页
Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of... Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of green tide is presented from Landsat TM/ETM plus image which needs not the atmospheric correction. In order to achieve an automatic detection of green tide, a linear relationship(y =0.723 x+0.504) between detection threshold y and subtraction x(x=λnir–λred) is found from the comparing Landsat TM/ETM plus image with the field surveys.Using this relationship, green tide patches can be detected automatically from Landsat TM/ETM plus image.Considering there is brightness difference between different regions in an image, the image will be divided into a plurality of windows(sub-images) with a same size firstly, and then each window will be detected using an adaptive detection threshold determined according to the discovered linear relationship. It is found that big errors will appear in some windows, such as those covered by clouds seriously. To solve this problem, the moving step k of windows is proposed to be less than the window width n. Using this mechanism, most pixels will be detected[n/k]×[n/k] times except the boundary pixels, then every pixel will be assigned the final class(green tide or sea water) according to majority rule voting strategy. It can be seen from the experiments, the proposed detection method using multi-windows and their adaptive thresholds can detect green tide from Landsat TM/ETM plus image automatically. Meanwhile, it avoids the reliance on the accurate atmospheric correction. 展开更多
关键词 automatic detection green tide adaptive threshold Landsat TM/ETM plus image
在线阅读 下载PDF
A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver:Ⅰ. Automatic detection and analysis method 被引量:13
3
作者 RuoXian Zhou XuDong Gu +8 位作者 KeXin Yang GuangSheng Li BinBin Ni Juan Yi Long Chen FuTai Zhao ZhengYu Zhao Qi Wang LiQing Zhou 《Earth and Planetary Physics》 CSCD 2020年第2期120-130,共11页
As a dispersive wave mode produced by lightning strokes, tweek atmospherics provide important hints of lower ionospheric(i.e., D-region) electron density. Based on data accumulation from the WHU ELF/VLF receiver syste... As a dispersive wave mode produced by lightning strokes, tweek atmospherics provide important hints of lower ionospheric(i.e., D-region) electron density. Based on data accumulation from the WHU ELF/VLF receiver system, we develop an automatic detection module in terms of the maximum-entropy-spectral-estimation(MESE) method to identify unambiguous instances of low latitude tweeks.We justify the feasibility of our procedure through a detailed analysis of the data observed at the Suizhou Station(31.57°N, 113.32°E) on17 February 2016. A total of 3961 tweeks were registered by visual inspection;the automatic detection method captured 4342 tweeks, of which 3361 were correct ones, producing a correctness percentage of 77.4%(= 3361/4342) and a false alarm rate of 22.6%(= 981/4342).A Short-Time Fourier Transformation(STFT) was also applied to trace the power spectral profiles of identified tweeks and to evaluate the tweek propagation distance. It is found that the fitting accuracy of the frequency–time curve and the relative difference of propagation distance between the two methods through the slope and through the intercept can be used to further improve the accuracy of automatic tweek identification. We suggest that our automatic tweek detection and analysis method therefore supplies a valuable means to investigate features of low latitude tweek atmospherics and associated ionospheric parameters comprehensively. 展开更多
关键词 tweeks automatic detection WHU-VLF receiver
在线阅读 下载PDF
A review of automatic detection of epilepsy based on EEG signals
4
作者 Qirui Ren Xiaofan Sun +6 位作者 Xiangqu Fu Shuaidi Zhang Yiyang Yuan Hao Wu Xiaoran Li Xinghua Wang Feng Zhang 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期8-30,共23页
Epilepsy is a common neurological disorder that occurs at all ages.Epilepsy not only brings physical pain to patients,but also brings a huge burden to the lives of patients and their families.At present,epilepsy detec... Epilepsy is a common neurological disorder that occurs at all ages.Epilepsy not only brings physical pain to patients,but also brings a huge burden to the lives of patients and their families.At present,epilepsy detection is still achieved through the observation of electroencephalography(EEG)by medical staff.However,this process takes a long time and consumes energy,which will create a huge workload to medical staff.Therefore,it is particularly important to realize the automatic detection of epilepsy.This paper introduces,in detail,the overall framework of EEG-based automatic epilepsy identification and the typical methods involved in each step.Aiming at the core modules,that is,signal acquisition analog front end(AFE),feature extraction and classifier selection,method summary and theoretical explanation are carried out.Finally,the future research directions in the field of automatic detection of epilepsy are prospected. 展开更多
关键词 EPILEPSY ELECTROENCEPHALOGRAPHY automatic detection analog front end feature extraction CLASSIFIER
在线阅读 下载PDF
An Automatic Detection Algorithm for Sea Breeze Fronts:A Case Study over the Gulf of Guinea in West Africa
5
作者 Thomas D’Aquin Allagbe François K.Guedje +1 位作者 Houeto V.V.Arnaud GandomèMayeul Léger Davy Quenum 《Atmospheric and Climate Sciences》 2025年第2期330-361,共32页
In this paper,we present a new approach to the detection of Sea Breeze Fronts(SBF)in the Gulf of Guinea using automated methods.The study focuses on southern West Africa,where SBFs play a crucial role in local weather... In this paper,we present a new approach to the detection of Sea Breeze Fronts(SBF)in the Gulf of Guinea using automated methods.The study focuses on southern West Africa,where SBFs play a crucial role in local weather.The re-search demonstrates that the dynamic of SBFs exerts a significant influence on local weather conditions and acts as a favourable mechanism for convection.The aim of this study is to improve the effectiveness of conventional SBF de-tection techniques by applying an automated methodology through the analy-sis of images obtained by the second generation Meteosat(MSG)satellite.Our method,based on an active contour technique called morphological snake,is capable of automatically detecting the cumulus lines that are associated with SBF in a relatively short period of time using a substantial number of MSG images taken every 15 min.To delineate the SBFs and to model their inland propagation by isochrones,several regression methods were employed.Among these,the kernel-weighted local polynomial regression(kwLPR)provided the greatest accuracy in modeling the SBF propagation,with an average spatial root mean square error(RMSE)of only 0.0034˚.The SBF penetrated as far as 100 to 146.3 km inland at certain longitudes.Its average penetration along the coast is 103.17 km.The algorithm is highly robust and has a wide range of practical ap-plications,including automatic pattern recognition and dynamic imaging.Fur-thermore,it has significant potential for future research into other complex phe-nomena,such as the propagation of pollutants and other atmospheric particles. 展开更多
关键词 Sea Breeze Front automatic detection Morphological Snake METEOSAT Gulf of Guinea West Africa
在线阅读 下载PDF
Research status and progress of deep learning in automatic esophageal cancer detection
6
作者 Jing Chen Xin Fan +4 位作者 Qiao-Liang Chen Wei Ren Qi Li Dong Wang Jian He 《World Journal of Gastrointestinal Oncology》 2025年第5期57-66,共10页
Esophageal cancer(EC),a common malignant tumor of the digestive tract,requires early diagnosis and timely treatment to improve patient prognosis.Automated detection of EC using medical imaging has the potential to inc... Esophageal cancer(EC),a common malignant tumor of the digestive tract,requires early diagnosis and timely treatment to improve patient prognosis.Automated detection of EC using medical imaging has the potential to increase screening efficiency and diagnostic accuracy,thereby significantly improving long-term survival rates and the quality of life of patients.Recent advances in deep learning(DL),particularly convolutional neural networks,have demons-trated remarkable performance in medical imaging analysis.These techniques have shown significant progress in the automated identification of malignant tumors,quantitative analysis of lesions,and improvement in diagnostic accuracy and efficiency.This article comprehensively examines the research progress of DL in medical imaging for EC,covering various imaging modalities such as digital pathology,endoscopy,computed tomography,etc.It explores the clinical value and application prospects of DL in EC screening and diagnosis.Additionally,the article addresses several critical challenges that must be overcome for the clinical translation of DL techniques,including constructing high-quality datasets,promoting multimodal feature fusion,and optimizing artificial intelligence-clinical workflow integration.By providing a detailed overview of the current state of DL in EC imaging and highlighting the key challenges and future directions,this article aims to guide future research and facilitate the clinical implementation of DL technologies in EC management,ultimately contributing to better patient outcomes. 展开更多
关键词 Esophageal cancer Artificial intelligence Deep learning automatic detection Medical imaging
暂未订购
Artificial intelligence-aided semi-automatic joint trace detection from textured three-dimensional models of rock mass
7
作者 Seyedahmad Mehrishal Jineon Kim +1 位作者 Yulong Shao Jae Joon Song 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期1973-1985,共13页
It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimens... It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimensional(3D)models are relatively straightforward but time-consuming.One potential solution to enhance this process is to use machine learning algorithms to detect the 3D traces.In this study,a unique pixel-wise texture mapper algorithm generates a dense point cloud representation of an outcrop with the precise resolution of the original textured 3D model.A virtual digital image rendering was then employed to capture virtual images of selected regions.This technique helps to overcome limitations caused by the surface morphology of the rock mass,such as restricted access,lighting conditions,and shading effects.After AI-powered trace detection on two-dimensional(2D)images,a 3D data structuring technique was applied to the selected trace pixels.In the 3D data structuring,the trace data were structured through 2D thinning,3D reprojection,clustering,segmentation,and segment linking.Finally,the linked segments were exported as 3D polylines,with each polyline in the output corresponding to a trace.The efficacy of the proposed method was assessed using a 3D model of a real-world case study,which was used to compare the results of artificial intelligence(AI)-aided and human intelligence trace detection.Rosette diagrams,which visualize the distribution of trace orientations,confirmed the high similarity between the automatically and manually generated trace maps.In conclusion,the proposed semi-automatic method was easy to use,fast,and accurate in detecting the dominant jointing system of the rock mass. 展开更多
关键词 automatic trace detection Digital joint mapping Rock discontinuities characterization Three-dimensional(3D)trace network
在线阅读 下载PDF
Quick and automatic detection of co-seismic landslides with multifeature deep learning model
8
作者 Wenchao HUANGFU Haijun QIU +5 位作者 Peng CUI Dongdong YANG Ya LIU Bingzhe TANG Zijing LIU Mohib ULLAH 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第7期2311-2325,共15页
Co-seismic landslide detection is essential for post-disaster rescue and risk assessment after an earthquake event.However,a variety of ground objects,including roads and bare land,have spectral characteristics simila... Co-seismic landslide detection is essential for post-disaster rescue and risk assessment after an earthquake event.However,a variety of ground objects,including roads and bare land,have spectral characteristics similar to those of co-seismic landslides,making it difficult to gather information and assess their impact rapidly and accurately.Therefore,an automatic detection method based on a deep learning model,named ENVINet5,with multiple features(ENVINet5_MF)was proposed to solve this problem and improve the detection accuracy of co-seismic landslides.The ENVINet5_MF method is advantageous for co-seismic landslide detection because it features a landslide gain index(LGI)that effectively eliminates the spectral interference of bare land and roads.We conducted two experiments using multi-temporal PlanetScope images acquired in Hokkaido,Japan,and Mainling,China.The accuracy evaluation and rationality analysis show that ENVINet5_MF performed better than comparative methods and that the co-seismic landslide areas detected by ENVINet5_MF were the most consistent with ground reference data.The findings of this study suggest that ENVINet5_MF can provide an efficient and accurate method for coseismic landslide detection to ensure a rapid response to co-seismic landslide disasters. 展开更多
关键词 Co-seismic landslide automatic detection Deep learning Landslide gain index PlanetScope images
原文传递
The application research on the Automatic Detection and Grading of Microaneurysms in Fundus Images of Diabetic Retinopathy by Artificial Intelligence Deep Learning Algorithms
9
作者 Zhao Xiaomin 《Modern General Practice》 2024年第1期35-39,共5页
This research focuses on the automatic detection and grading of microaneurysms in fundus images of diabetic retinopathy using artificial intelligence deep learning algorithms.By integrating multi-source fundus image d... This research focuses on the automatic detection and grading of microaneurysms in fundus images of diabetic retinopathy using artificial intelligence deep learning algorithms.By integrating multi-source fundus image data and undergoing a rigorous preprocessing workflow,a hybrid deep learning model architecture combining a modified U-Net and a residual neural network was adopted for the study.The experimental results show that the model achieved an accuracy of[X]%in microaneurysm detection,with a recall rate of[Y]%and a precision rate of[Z]%.In terms of grading diabetic retinopathy,the Cohen’s kappa coefficient for agreement with clinical grading was[K],and there were specific sensitivities and specificities for each grade.Compared with traditional methods,this model has significant advantages in processing speed and result consistency.However,it also has limitations such as insufficient data diversity,difficulties for the algorithm in detecting microaneurysms in severely hemorrhagic images,and high computational costs.The results of this research are of great significance for the early screening and clinical diagnosis decision support of diabetic retinopathy.In the future,it is necessary to further optimize the data and algorithms and promote clinical integration and telemedicine applications. 展开更多
关键词 Diabetic retinopathy MICROANEURYSMS Deep learning Fundus images automatic detection and grading
在线阅读 下载PDF
CMS-YOLO:An Automated Multi-Category Brain Tumor Detection Algorithm Based on Improved YOLOv10s
10
作者 Li Li Xiao Wang +3 位作者 Ran Ding Linlin Luo Qinmu Wu Zhiqin He 《Computers, Materials & Continua》 2025年第10期1287-1309,共23页
Brain tumors are neoplastic diseases caused by the proliferation of abnormal cells in brain tissues,and their appearance may lead to a series of complex symptoms.However,current methods struggle to capture deeper brai... Brain tumors are neoplastic diseases caused by the proliferation of abnormal cells in brain tissues,and their appearance may lead to a series of complex symptoms.However,current methods struggle to capture deeper brain tumor image feature information due to the variations in brain tumor morphology,size,and complex background,resulting in low detection accuracy,high rate of misdiagnosis and underdiagnosis,and challenges in meeting clinical needs.Therefore,this paper proposes the CMS-YOLO network model for multi-category brain tumor detection,which is based on the You Only Look Once version 10(YOLOv10s)algorithm.This model innovatively integrates the Convolutional Medical UNet extended block(CMUNeXt Block)to design a brand-new CSP Bottleneck with 2 convolutions(C2f)structure,which significantly enhances the ability to extract features of the lesion area.Meanwhile,to address the challenge of complex backgrounds in brain tumor detection,a Multi-Scale Attention Aggregation(MSAA)module is introduced.The module integrates features of lesions at different scales,enabling the model to effectively capture multi-scale contextual information and enhance detection accuracy in complex scenarios.Finally,during the model training process,the Shape-IoU loss function is employed to replace the Complete-IoU(CIoU)loss function for optimizing bounding box regression.This ensures that the predicted bounding boxes generated by the model closely match the actual tumor contours,thereby further enhancing the detection precision.The experimental results show that the improved method achieves 94.80%precision,93.60%recall,96.20%score,and 79.60%on the MRI for Brain Tumor with Bounding Boxes dataset.Compared to the YOLOv10s model,this represents improvements of 1.0%,1.1%,1.0%,and 1.1%,respectively.The method can achieve automatic detection and localization of three distinct categories of brain tumors—glioma,meningioma,and pituitary tumor,which can accurately detect and identify brain tumors,assist doctors in early diagnosis,and promote the development of early treatment. 展开更多
关键词 Brain tumor deep learning automatic detection YOLOv10s CMUNeXt Block MSAA Shape-IoU
在线阅读 下载PDF
Automatic fovea detection and choroid segmentation for choroidal thickness assessment in optical coherence tomography
11
作者 Chen Yu Lin Hung Ju Chen +3 位作者 Yi Kit Chan Wei Ping Hsia Yu Len Huang Chia Jen Chang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第10期1763-1771,共9页
AIM:To develop an automated model for subfoveal choroidal thickness(SFCT)detection in optical coherence tomography(OCT)images,addressing manual fovea location and choroidal contour challenges.METHODS:Two procedures we... AIM:To develop an automated model for subfoveal choroidal thickness(SFCT)detection in optical coherence tomography(OCT)images,addressing manual fovea location and choroidal contour challenges.METHODS:Two procedures were proposed:defining the fovea and segmenting the choroid.Fovea localization from B-scan OCT image sequence with three-dimensional reconstruction(LocBscan-3D)predicted fovea location using central foveal depression features,and fovea localization from two-dimensional en-face OCT(LocEN-2D)used a mask region-based convolutional neural network(Mask R-CNN)model for optic disc detection,and determined the fovea location based on optic disc relative position.Choroid segmentation also employed Mask R-CNN.RESULTS:For 53 eyes in 28 healthy subjects,LocBscan-3D’s mean difference between manual and predicted fovea locations was 170.0μm,LocEN-2D yielded 675.9μm.LocEN-2D performed better in non-high myopia group(P=0.02).SFCT measurements from Mask R-CNN aligned with manual values.CONCLUSION:Our models accurately predict SFCT in OCT images.LocBscan-3D excels in precise fovea localization even with high myopia.LocEN-2D shows high detection rates but lower accuracy especially in the high myopia group.Combining both models offers a robust SFCT assessment approach,promising efficiency and accuracy for large-scale studies and clinical use. 展开更多
关键词 subfoveal choroidal thickness optical coherence tomography automatic foveal detection automatic choroid segmentation
原文传递
An automatic seismic signal detection method based on fourth-order statistics and applications 被引量:2
12
作者 刘希强 蔡寅 +4 位作者 赵瑞 曲保安 赵银刚 冯志军 李红 《Applied Geophysics》 SCIE CSCD 2014年第2期128-138,252,共12页
Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detect... Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detecting regional seismic events and a fourth-order statistics algorithm with the Akaike information criterion(AIC) for determining the direct wave phase, based on the differences, or changes, in energy, frequency, and amplitude of the direct P- or S-waves signal and noise. Simulations suggest for that the proposed fourth-order statistics result in high resolution even for weak signal and noise variations at different amplitude, frequency, and polarization characteristics. To improve the precision of establishing the S-waves onset, first a specific segment of P-wave seismograms is selected and the polarization characteristics of the data are obtained. Second, the S-wave seismograms that contained the specific segment of P-wave seismograms are analyzed by S-wave polarization filtering. Finally, the S-wave phase onset times are estimated. The proposed algorithm was used to analyze regional earthquake data from the Shandong Seismic Network. The results suggest that compared with conventional methods, the proposed algorithm greatly decreased false and missed earthquake triggers, and improved the detection precision of direct P- and S-wave phases. 展开更多
关键词 Seismic signal P and S-waves automatic detection correction trigger function
在线阅读 下载PDF
A Fast Automatic Road Crack Segmentation Method Based on Deep Learning with Model Compression Framework
13
作者 Minggang Xu Chong Li +4 位作者 Xiangli Kong Yuming Wu Zhixiang Lu Jionglong Su Zhun Fan 《Journal of Beijing Institute of Technology》 2025年第4期388-404,共17页
Computer-vision and deep-learning techniques are widely applied to detect,monitor,and assess pavement conditions including road crack detection.Traditional methods fail to achieve satisfactory accuracy and generalizat... Computer-vision and deep-learning techniques are widely applied to detect,monitor,and assess pavement conditions including road crack detection.Traditional methods fail to achieve satisfactory accuracy and generalization performance in for crack detection.Complex network model can generate redundant feature maps and computational complexity.Therefore,this paper proposes a novel model compression framework based on deep learning to detect road cracks,which can improve the detection efficiency and accuracy.A distillation loss function is proposed to compress the teacher model,followed by channel pruning.Meanwhile,a multi-dilation model is proposed to improve the accuracy of the model pruned.The proposed method is tested on the public database CrackForest dataset(CFD).The experimental results show that the proposed method is more efficient and accurate than other state-of-art methods. 展开更多
关键词 automatic road crack detection deep learning U-net DISTILLATION channel pruning multi-dilation model
在线阅读 下载PDF
Automatic detection of ruminant cows’ mouth area during rumination based on machine vision and video analysis technology 被引量:5
14
作者 Yanru Mao Dongjian He Huaibo Song 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第1期186-191,共6页
In order to realize the automatic monitoring of ruminant activities of cows,an automatic detection method for the mouth area of ruminant cows based on machine vision technology was studied.Optical flow was used to cal... In order to realize the automatic monitoring of ruminant activities of cows,an automatic detection method for the mouth area of ruminant cows based on machine vision technology was studied.Optical flow was used to calculate the relative motion speed of each pixel in the video frame images.The candidate mouth region with large motion ranges was extracted,and a series of processing methods,such as grayscale processing,threshold segmentation,pixel point expansion and adjacent region merging,were carried out to extract the real area of cows’mouth.To verify the accuracy of the proposed method,six videos with a total length of 96 min were selected for this research.The results showed that the highest accuracy was 87.80%,the average accuracy was 76.46%and the average running time of the algorithm was 6.39 s.All the results showed that this method can be used to detect the mouth area automatically,which lays the foundation for automatic monitoring of cows’ruminant behavior. 展开更多
关键词 ruminant cows mouth area automatic detection machine vision video analysis technology ruminant behavior optical flow
原文传递
Design and test of automatic detection platform for soil fragmentation rate in rotary tillage
15
作者 Xinwu Du Xulong Yang +1 位作者 Jing Pang Jiangtao Ji 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第5期40-49,共10页
As an important index of soil crushing performance of rotary tiller,the soil fragmentation rate is still limited to manual measurement.In this study,an automatic detection platform for soil fragmentation rate was desi... As an important index of soil crushing performance of rotary tiller,the soil fragmentation rate is still limited to manual measurement.In this study,an automatic detection platform for soil fragmentation rate was designed,which integrated soil intake,screening,weighing and calculation of soil fragmentation rate.This platform can solve the problem that the index of the soil fragmentation rate cannot be detected quickly and effectively after rotary tillage,which leads to difficulty in field quality evaluation.The platform was mainly composed of a shovel soil module,conveying module,screening module,weighing module and automatic control system,which could realize single-line and multi-point automatic soil fragmentation rate detection.Based on the homogeneous dry slope model,the tilting angles of soil intake and soil feeding after rotary tillage on the platform were determined to be 30.10°and 26.67°,respectively.According to the principle of flow conservation,a rotary circulation screening module was designed to obtain soil particle size grading.A method based on the principle of multi-line and multi-point measurement was developed to detect soil fragmentation rate.The influence of screening speed on screening effect was analyzed,and the reasonable value of screening speed was determined to be 0.5 m/s.A field performance test was carried out in October 2019 to verify the detection performance of the platform.The results showed that,compared with the manual test method,the maximum test error was no more than 11%,the minimum test error was less than 4%,the maximum single test time was no more than 2 min,and the total test time of each test area was no more than 30 min.The efficiency of single-point detection was significantly better than the manual detection,which indicated that the design in this study met the requirements of rapid detection of soil fragmentation rate,and provided a new idea for the automatic detection of quality of rotary tillage. 展开更多
关键词 rotary tillage soil fragmentation rate automatic detection DESIGN TEST
原文传递
An Automatic HFO Detection Method Combining Visual Inspection Features with Multi-Domain Features
16
作者 Xiaochen Liu Lingli Hu +4 位作者 Chenglin Xu Shuai Xu Shuang Wang Zhong Chen Jizhong Shen 《Neuroscience Bulletin》 SCIE CAS CSCD 2021年第6期777-788,共12页
As an important promising biomarker,high frequency oscillations(HFOs)can be used to track epileptic activity and localize epileptogenic zones.However,visual marking of HFOs from a large amount of intracranial electroe... As an important promising biomarker,high frequency oscillations(HFOs)can be used to track epileptic activity and localize epileptogenic zones.However,visual marking of HFOs from a large amount of intracranial electroencephalogram(iEEG)data requires a great deal of time and effort from researchers,and is also very dependent on visual features and easily influenced by subjective factors.Therefore,we proposed an automatic epileptic HFO detection method based on visual features and non-intuitive multi-domain features.To eliminate the interference of continuous oscillatory activity in detected sporadic short HFO events,the iEEG signals adjacent to the detected events were set as the neighboring environmental range while the number of oscillations and the peak–valley differences were calculated as the environmental reference features.The proposed method was developed as a MatLab-based HFO detector to automatically detect HFOs in multi-channel,long-distance iEEG signals.The performance of our detector was evaluated on iEEG recordings from epileptic mice and patients with intractable epilepsy.More than 90%of the HFO events detected by this method were confirmed by experts,while the average missed-detection rate was<10%.Compared with recent related research,the proposed method achieved a synchronous improvement of sensitivity and specificity,and a balance between low false-alarm rate and high detection rate.Detection results demonstrated that the proposed method performs well in sensitivity,specificity,and precision.As an auxiliary tool,our detector can greatly improve the efficiency of clinical experts in inspecting HFO events during the diagnosis and treatment of epilepsy. 展开更多
关键词 EPILEPSY HFO automatic detection Combined features
原文传递
Automatic detection of sow estrus using a lightweight real-time detector and thermal images 被引量:3
17
作者 Haibo Zheng Hang Zhang +2 位作者 Shuang Song Yue Wang Tonghai Liu 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期194-207,共14页
Determination of ovulation time is one of the most important tasks in sow reproduction management.Temperature variation in the vulva of the sows can be used as a predictor of ovulation time.However,the skin temperatur... Determination of ovulation time is one of the most important tasks in sow reproduction management.Temperature variation in the vulva of the sows can be used as a predictor of ovulation time.However,the skin temperatures of sows in existing studies are obtained manually from infrared thermal images,posing an obstacle to the automatic prediction of ovulation time.In this study,an improved YOLO-V5s detector based on feature fusion and dilated convolution(FDYOLOV5s)was proposed for the automatic extraction of the vulva temperature of sows based on infrared thermal images.For the purpose of reducing the model complexity,the depthwise separable convolution and the modified lightweight ShuffleNet-V2 module were introduced in the backbone.Meanwhile,the feature fusion network structure of the model was simplified for efficiency,and a mixed dilated convolutional module was designed to obtain global features.The experimental results show that FD-YOLOV5s outperformed the other nine methods,with a mean average precision(mAP)of 99.1%,an average frame rate of 156.25 fps,and a model size of only 3.86 MB,indicating that the method effectively simplifies the model while ensuring detection accuracy.Using a linear regression between manual extraction and the results extracted using this method in randomly selected thermal images,the coefficients of determination for maximum and average vulvar temperatures reached 99.5%and 99.3%,respectively.The continuous vulva temperature of sows was obtained by the target detection algorithm,and the sow estrus detection was performed by the temperature trend and compared with the manually detected estrus results.The results showed that the sensitivity,specificity,and error rate of the estrus detection algorithm were 89.3%,94.5%,and 5.8%,respectively.The method achieves real-time and accurate extraction of sow vulva temperature and can be used for the automatic detection of sow estrus,which could be helpful for the automatic prediction of ovulation time. 展开更多
关键词 automatic estrus detection thermal images real-time detector vulva temperature mixed dilated convolutional
原文传递
Review of shock wave detection method in CFD post-processing 被引量:11
18
作者 Wu Ziniu Xu Yizhe +1 位作者 Wang Wenbin Hu Ruifeng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期501-513,共13页
In the present computational fluid dynamics (CFD) community, post-processing is regarded as a procedure to view parameter distribution, detect characteristic structure and reveal physical mechanism of fluid flow bas... In the present computational fluid dynamics (CFD) community, post-processing is regarded as a procedure to view parameter distribution, detect characteristic structure and reveal physical mechanism of fluid flow based on computational or experimental results. Field plots by contours, iso-surfaces, streamlines, vectors and others are traditional post-processing techniques. While the shock wave, as one important and critical flow structure in many aerodynamic problems, can hardly be detected or distinguished in a direct way using these traditional methods, due to possible confusions with other similar discontinuous flow structures like slip line, contact discontinuity, etc. Therefore, method for automatic detection of shock wave in post-processing is of great importance for both academic research and engineering applications. In this paper, the current status of methodologies developed for shock wave detection and implementations in post-processing platform are reviewed, as well as discussions on advantages and limitations of the existing methods and proposals for further studies of shock wave detection method. We also develop an advanced post-processing software, with improved shock detection. 展开更多
关键词 AERODYNAMICS automatic detection Computational fluid dynamics Shock wave POST-PROCESSING
原文传递
Auroral event detection using spatiotemporal statistics of local motion vectors 被引量:1
19
作者 WANG Qian LIANG Jimin HU Zejun 《Advances in Polar Science》 2013年第3期175-182,共8页
The analysis and exploration of auroral dynamics are very significant for studying auroral mechanisms. This paper proposes a method based on auroral dynamic processes for detecting auroral events automatically. We fir... The analysis and exploration of auroral dynamics are very significant for studying auroral mechanisms. This paper proposes a method based on auroral dynamic processes for detecting auroral events automatically. We first obtained the motion fields using the multiscale fluid flow estimator. Then, the auroral video frame sequence was represented by the spatiotemporal statistics of local motion vectors. Finally, automatic auroral event detection was achieved. The experimental results show that our methods could detect the required auroral events effectively and accurately, and that the detections were independent on any specific auroral event. The proposed method makes it feasible to statistically analyze a large number of continuous observations based on the auroral dynamic process. 展开更多
关键词 automatic detection auroral event fluid flow
在线阅读 下载PDF
Automatic Diagnosis of Polycystic Ovarian Syndrome Using Wrapper Methodology with Deep Learning Techniques
20
作者 Mohamed Abouhawwash S.Sridevi +3 位作者 Suma Christal Mary Sundararajan Rohit Pachlor Faten Khalid Karim Doaa Sami Khafaga 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期239-253,共15页
One of the significant health issues affecting women that impacts their fertility and results in serious health concerns is Polycystic ovarian syndrome(PCOS).Consequently,timely screening of polycystic ovarian syndrom... One of the significant health issues affecting women that impacts their fertility and results in serious health concerns is Polycystic ovarian syndrome(PCOS).Consequently,timely screening of polycystic ovarian syndrome can help in the process of recovery.Finding a method to aid doctors in this procedure was crucial due to the difficulties in detecting this condition.This research aimed to determine whether it is possible to optimize the detection of PCOS utilizing Deep Learning algorithms and methodologies.Additionally,feature selection methods that produce the most important subset of features can speed up calculation and enhance the effectiveness of classifiers.In this research,the tri-stage wrapper method is used because it reduces the computation time.The proposed study for the Automatic diagnosis of PCOS contains preprocessing,data normalization,feature selection,and classification.A dataset with 39 characteristics,including metabolism,neuroimaging,hormones,and biochemical information for 541 subjects,was employed in this scenario.To start,this research pre-processed the information.Next for feature selection,a tri-stage wrapper method such as Mutual Information,ReliefF,Chi-Square,and Xvariance is used.Then,various classification methods are tested and trained.Deep learning techniques including convolutional neural network(CNN),multi-layer perceptron(MLP),Recurrent neural network(RNN),and Bi long short-term memory(Bi-LSTM)are utilized for categorization.The experimental finding demonstrates that with effective feature extraction process using tri stage wrapper method+CNN delivers the highest precision(97%),high accuracy(98.67%),and recall(89%)when compared with other machine learning algorithms. 展开更多
关键词 Deep learning automatic detection polycystic ovarian syndrome tri-stage wrapper method mutual information RELIEF CHI-SQUARE
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部