Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradi...Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.展开更多
Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM t...Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM techniques(i.e.,laser powder bed fusion and laser-directed energy deposition)will be reviewed,covering the aspects of processes,materials and post-processing.The impacts of process parameters and strategies for optimizing parameters will be elucidated.Various types of Ti alloys processed by LAM,includingα-Ti,(α+β)-Ti,andβ-Ti alloys,will be overviewed in terms of micro structures and benchmarking properties.Furthermore,the post-processing methods for improving the performance of L AM-processed Ti alloys,including conventional and novel heat treatment,hot isostatic pressing,and surface processing(e.g.,ultrasonic and laser shot peening),will be systematically reviewed and discussed.The review summarizes the process windows,properties,and performance envelopes and benchmarks the research achievements in LAM of Ti alloys.The outlooks of further trends in LAM of Ti alloys are also highlighted at the end of the review.This comprehensive review could serve as a valuable resource for researchers and practitioners,promoting further advancements in LAM-built Ti alloys and their applications.展开更多
This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids...This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids. The sinusoid which contributes most to the reduction of overall NMR is chosen. Combined with our improved parametric psychoacoustic model and advanced peak riddling techniques, the number of sinusoids required can be greatly reduced and the coding efficiency can be greatly enhanced. A lightweight version is also given to reduce the amount of computation with only little sacrifice of performance. Secondly, we propose two enhancement techniques for sinusoid synthesis: bandwidth enhancement and line enhancement. With little overhead, the effective bandwidth can be extended one more octave; the timbre tends to sound much brighter, thicker and more beautiful.展开更多
Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains...Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.展开更多
In recent years,audio pattern recognition has emerged as a key area of research,driven by its applications in human-computer interaction,robotics,and healthcare.Traditional methods,which rely heavily on handcrafted fe...In recent years,audio pattern recognition has emerged as a key area of research,driven by its applications in human-computer interaction,robotics,and healthcare.Traditional methods,which rely heavily on handcrafted features such asMel filters,often suffer frominformation loss and limited feature representation capabilities.To address these limitations,this study proposes an innovative end-to-end audio pattern recognition framework that directly processes raw audio signals,preserving original information and extracting effective classification features.The proposed framework utilizes a dual-branch architecture:a global refinement module that retains channel and temporal details and a multi-scale embedding module that captures high-level semantic information.Additionally,a guided fusion module integrates complementary features from both branches,ensuring a comprehensive representation of audio data.Specifically,the multi-scale audio context embedding module is designed to effectively extract spatiotemporal dependencies,while the global refinement module aggregates multi-scale channel and temporal cues for enhanced modeling.The guided fusion module leverages these features to achieve efficient integration of complementary information,resulting in improved classification accuracy.Experimental results demonstrate the model’s superior performance on multiple datasets,including ESC-50,UrbanSound8K,RAVDESS,and CREMA-D,with classification accuracies of 93.25%,90.91%,92.36%,and 70.50%,respectively.These results highlight the robustness and effectiveness of the proposed framework,which significantly outperforms existing approaches.By addressing critical challenges such as information loss and limited feature representation,thiswork provides newinsights and methodologies for advancing audio classification and multimodal interaction systems.展开更多
With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multi...With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.展开更多
基金the Young Investigator Group“Artificial Intelligence for Probabilistic Weather Forecasting”funded by the Vector Stiftungfunding from the Federal Ministry of Education and Research(BMBF)and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments。
文摘Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.
基金financially supported by the 2022 MTC Young Individual Research Grants under Singapore Research,Innovation and Enterprise(RIE)2025 Plan(No.M22K3c0097)the Natural Science Foundation of US(No.DMR-2104933)the sponsorship of the China Scholarship Council(No.202106130051)。
文摘Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM techniques(i.e.,laser powder bed fusion and laser-directed energy deposition)will be reviewed,covering the aspects of processes,materials and post-processing.The impacts of process parameters and strategies for optimizing parameters will be elucidated.Various types of Ti alloys processed by LAM,includingα-Ti,(α+β)-Ti,andβ-Ti alloys,will be overviewed in terms of micro structures and benchmarking properties.Furthermore,the post-processing methods for improving the performance of L AM-processed Ti alloys,including conventional and novel heat treatment,hot isostatic pressing,and surface processing(e.g.,ultrasonic and laser shot peening),will be systematically reviewed and discussed.The review summarizes the process windows,properties,and performance envelopes and benchmarks the research achievements in LAM of Ti alloys.The outlooks of further trends in LAM of Ti alloys are also highlighted at the end of the review.This comprehensive review could serve as a valuable resource for researchers and practitioners,promoting further advancements in LAM-built Ti alloys and their applications.
文摘This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids. The sinusoid which contributes most to the reduction of overall NMR is chosen. Combined with our improved parametric psychoacoustic model and advanced peak riddling techniques, the number of sinusoids required can be greatly reduced and the coding efficiency can be greatly enhanced. A lightweight version is also given to reduce the amount of computation with only little sacrifice of performance. Secondly, we propose two enhancement techniques for sinusoid synthesis: bandwidth enhancement and line enhancement. With little overhead, the effective bandwidth can be extended one more octave; the timbre tends to sound much brighter, thicker and more beautiful.
基金supported by the Beijing Natural Science Foundation(5252014)the National Natural Science Foundation of China(62303063)。
文摘Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.
基金supported by the National Natural Science Foundation of China(62106214)the Hebei Natural Science Foundation(D2024203008)the Provincial Key Laboratory Performance Subsidy Project(22567612H).
文摘In recent years,audio pattern recognition has emerged as a key area of research,driven by its applications in human-computer interaction,robotics,and healthcare.Traditional methods,which rely heavily on handcrafted features such asMel filters,often suffer frominformation loss and limited feature representation capabilities.To address these limitations,this study proposes an innovative end-to-end audio pattern recognition framework that directly processes raw audio signals,preserving original information and extracting effective classification features.The proposed framework utilizes a dual-branch architecture:a global refinement module that retains channel and temporal details and a multi-scale embedding module that captures high-level semantic information.Additionally,a guided fusion module integrates complementary features from both branches,ensuring a comprehensive representation of audio data.Specifically,the multi-scale audio context embedding module is designed to effectively extract spatiotemporal dependencies,while the global refinement module aggregates multi-scale channel and temporal cues for enhanced modeling.The guided fusion module leverages these features to achieve efficient integration of complementary information,resulting in improved classification accuracy.Experimental results demonstrate the model’s superior performance on multiple datasets,including ESC-50,UrbanSound8K,RAVDESS,and CREMA-D,with classification accuracies of 93.25%,90.91%,92.36%,and 70.50%,respectively.These results highlight the robustness and effectiveness of the proposed framework,which significantly outperforms existing approaches.By addressing critical challenges such as information loss and limited feature representation,thiswork provides newinsights and methodologies for advancing audio classification and multimodal interaction systems.
基金funded by theNational Science and Technology Council of Taiwan under the grant number NSTC 113-2221-E-035-058.
文摘With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.