The growth of (100} oriented CVD (Chemical Vapor Deposition) diamond film under Joe-Badgwell-Hauge (J-B-H) model is simulated at atomic scale by using revised KMC (Kinetic Monte Carlo) method. The results show that: (...The growth of (100} oriented CVD (Chemical Vapor Deposition) diamond film under Joe-Badgwell-Hauge (J-B-H) model is simulated at atomic scale by using revised KMC (Kinetic Monte Carlo) method. The results show that: (1) under Joe's model, the growth mechanism from single carbon species is suitable for the growth of (100) oriented CVD diamond film in low temperature; (2) the deposition rate and surface roughness (Rq) under Joe's model are influenced intensively by temperature (Ta) and not evident bymass fraction W of atom chlorine; (3)the surface roughness increases with the deposition rate, i.e. the film quality becomes worse with elevated temperature, in agreement with Grujicic's prediction; (4) the simulation results cannot make sure the role of single carbon insertion.展开更多
The growth of {100}-oriented CVD diamond film under two modifications ofJ-B-H model at low substrate temperatures was simulated by using a revised KMC method at atomicscale. The results were compared both in Cl-contai...The growth of {100}-oriented CVD diamond film under two modifications ofJ-B-H model at low substrate temperatures was simulated by using a revised KMC method at atomicscale. The results were compared both in Cl-containing systems and in C-H system as follows: (1)Substrate temperature can produce an important effect both on film deposition rate and on surfaceroughness; (2) Aomic Cl takes an active role for the growth of diamond film at low temperatures; (3){100}-oriented diamond film cannot deposit under single carbon insertion mechanism, which disagreeswith the predictions before; (4) The explanation of the exact role of atomic Cl is not provided inthe simulation results.展开更多
There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this int...There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carded out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.展开更多
基金[This work was financially supported by National Natural Science Founds of China (No. 59872003).]
文摘The growth of (100} oriented CVD (Chemical Vapor Deposition) diamond film under Joe-Badgwell-Hauge (J-B-H) model is simulated at atomic scale by using revised KMC (Kinetic Monte Carlo) method. The results show that: (1) under Joe's model, the growth mechanism from single carbon species is suitable for the growth of (100) oriented CVD diamond film in low temperature; (2) the deposition rate and surface roughness (Rq) under Joe's model are influenced intensively by temperature (Ta) and not evident bymass fraction W of atom chlorine; (3)the surface roughness increases with the deposition rate, i.e. the film quality becomes worse with elevated temperature, in agreement with Grujicic's prediction; (4) the simulation results cannot make sure the role of single carbon insertion.
基金This project was supported by National Natural Science Foundation of China (No.59872003).]
文摘The growth of {100}-oriented CVD diamond film under two modifications ofJ-B-H model at low substrate temperatures was simulated by using a revised KMC method at atomicscale. The results were compared both in Cl-containing systems and in C-H system as follows: (1)Substrate temperature can produce an important effect both on film deposition rate and on surfaceroughness; (2) Aomic Cl takes an active role for the growth of diamond film at low temperatures; (3){100}-oriented diamond film cannot deposit under single carbon insertion mechanism, which disagreeswith the predictions before; (4) The explanation of the exact role of atomic Cl is not provided inthe simulation results.
文摘There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carded out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.