Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regressio...Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.展开更多
Study on the quantitative structure-activity relationship (QSAR) of 26 compounds, N-[5-(2-furanyl)-2-methyl-4-oxo-4H-thieno[2,3-d]pyrimidin-3-yl]-carboxamide and 3-substituted- 5-(2-furanyl)-2-methyl-3H-thieno[2...Study on the quantitative structure-activity relationship (QSAR) of 26 compounds, N-[5-(2-furanyl)-2-methyl-4-oxo-4H-thieno[2,3-d]pyrimidin-3-yl]-carboxamide and 3-substituted- 5-(2-furanyl)-2-methyl-3H-thieno[2,3-d]pyrimidin-4-ones, with three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) was carried out. SMR-PLS QSAR models have been created and good correlation coefficients and cross-validated correlation coefficients were obtained. The result shows that the models have good prediction capability and favorable stability and the 3D-HoVAIF is applicable to the molecular structural characterization and biological activity prediction.展开更多
Electromagnetically induced transparency (EIT) is investigated in a system of cold, interacting cesium Rydberg atoms. The utilized cesium levels 6S1/2, 6P3/2 and nD5/2 constitute a cascade three-level system, in whi...Electromagnetically induced transparency (EIT) is investigated in a system of cold, interacting cesium Rydberg atoms. The utilized cesium levels 6S1/2, 6P3/2 and nD5/2 constitute a cascade three-level system, in which a coupling laser drives the Rydberg transition, and a probe laser detects the EIT signal on the 6S1/2 to 6/23/2 transition. Rydberg EIT spectra are found to depend on the strong interaction between the Rydberg atoms. Diminished EIT transparency is obtained when the Rabi frequency of the probe laser is increased, whereas the corresponding linewidth remains unchanged. To model the system with a three-level Linclblad equation, we introduce a Rydberg-level dephasing rate γ3 = κ×(P33/Ωp)^2, with a value κ that depends on the ground-state atom density and the Rydberg level, The simulation results are largely consistent with the measurements. The experiments, in which the principal quantum number is varied between 30 and 43, demonstrate that the EIT reduction observed at large Ωp is due to the strong interactions between the Rydberg atoms.展开更多
Fano-like quantum routing of single photons in a system with two waveguides coupled to two collocated atoms is investigated theoretically. Using a full quantum theory in real space, photonic scattering amplitudes alon...Fano-like quantum routing of single photons in a system with two waveguides coupled to two collocated atoms is investigated theoretically. Using a full quantum theory in real space, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the atomic dipole-dipole interaction, an evident Fano-line shape emerges in the scattering spectra of the single-dot configuration system. Moreover, Fano resonance can also be achieved by varying the atom-waveguide coupling strength and atomic detuning, in the presence of the atomic dipole-dipole interaction. Therefore, the atomic dipole-dipole interaction may be utilized as a possible way to control spectral Fano-like resonance. The feasibility with the experimental waveguide channels is also discussed.展开更多
The generation of nonclassical photons via quantum light–matter interactions is of fundamental importance in quantum optics.Here we investigate steady-state two-photon correlation function and photon squeezing in an ...The generation of nonclassical photons via quantum light–matter interactions is of fundamental importance in quantum optics.Here we investigate steady-state two-photon correlation function and photon squeezing in an open anisotropic Rabi lattice by applying quantum dressed master equation embedded with the mean-field approximation.The expanded antibunching effect of photons due to anisotropic qubit–photon interaction,is strongly suppressed by including inter-site photon tunneling,whereas the giant photon bunching keeps robust with weak inter-site photon tunneling strength.The microscopic processes for photon antibunching and bunching effects are presented based on incoherent transitions between eigenstates.The photon squeezing is also analyzed under the influences of qubit–photon coupling and anisotropic factor.The quadrature squeezing shows persistency by tuning on the inter-site photon tunneling,and becomes dramatically pronounced at the small anisotropic factor.Moreover,the increasing number of qubits significantly enhances quadrature squeezing with strong qubit–photon interaction.We hope such results may provide physical insights into efficient generation and manipulation of nonclassical features of photons in quantum light–matter interacting lattice systems.展开更多
Atomic and close-to-atomic scale manufacturing(ACSM)represents techniques for manufacturing high-end products in various fields,including future-generation computing,communication,energy,and medical devices and materi...Atomic and close-to-atomic scale manufacturing(ACSM)represents techniques for manufacturing high-end products in various fields,including future-generation computing,communication,energy,and medical devices and materials.In this paper,the theoretical boundary between ACSM and classical manufacturing is identified after a thorough discussion of quantum mechanics and their effects on manufacturing.The physical origins of atomic interactions and energy beams-matter interactions are revealed from the point view of quantum mechanics.The mechanisms that dominate several key ACSM processes are introduced,and a current numerical study on these processes is reviewed.A comparison of current ACSM processes is performed in terms of dominant interactions,representative processes,resolution and modelling methods.Future fundamental research is proposed for establishing new approaches for modelling ACSM,material selection or preparation and control of manufacturing tools and environments.This paper is by no means comprehensive but provides a starting point for further systematic investigation of ACSM fundamentals to support and accelerate its industrial scale implementation in the near future.展开更多
Transient coherent oscillations in a closed A system under far-off resonant Raman fields were investigated theoreti- cally. It has been found that the coherent superposition of the ground states can be formed due to t...Transient coherent oscillations in a closed A system under far-off resonant Raman fields were investigated theoreti- cally. It has been found that the coherent superposition of the ground states can be formed due to the absorption even for initial maximal mixed ground states. The absorption oscillates with a period depending on the two-photon detuning when the system is initially in a transparent state and the two-photon Raman detuning is suddenly changed. The amplitude of the absorption decays with the decay rate of the ground states, which is different from the case when the lasers are applied resonantly. These transient coherent oscillations can be used to measure the relaxation rate of the ground states.展开更多
The resonance interaction of two-state atoms with single mode field is described theoretically by using the semi-classical theory and Jaynes-Cummings model. The nonlinear characteristics of this system are calculated ...The resonance interaction of two-state atoms with single mode field is described theoretically by using the semi-classical theory and Jaynes-Cummings model. The nonlinear characteristics of this system are calculated by using FFT and Runge-Kutta methods. The chaotic strange attractors in this system are obtained from the numerical results.展开更多
Atomic interaction leads to dephasing and damping of Bloch oscillations(BOs)in optical lattices,which limits observation and applications of BOs.How to obtain persistent BOs is particularly important.Here,the nonlinea...Atomic interaction leads to dephasing and damping of Bloch oscillations(BOs)in optical lattices,which limits observation and applications of BOs.How to obtain persistent BOs is particularly important.Here,the nonlinear Bloch dynamics of the Bose-Einstein condensate with two-body and three-body interactions in deep optical lattices is studied.The damping rate induced by interactions is obtained.The damping induced by two-body interaction plays a dominant role,while the damping induced by three-body interaction is weak.However,when the two-body and three-body interactions satisfy a threshold,long-lived coherent BOs are observed.Furthermore,the Bloch dynamics with periodical modulation of linear force is studied.The frequencies of linear force corresponding to resonance and pseudoresonance are obtained,and rich dynamical phenomena,i.e.,stable and strong BOs,drifting and dispersion of wave packet,are predicted.The controllable Bloch dynamics is provided with the periodic modulation of the linear force.展开更多
The anharmonic vibrator, whose expression of potential energy contains second and third powers of coordinates, is treated on the basis of dynamical procedure, which presents the state of motion by means of mean positi...The anharmonic vibrator, whose expression of potential energy contains second and third powers of coordinates, is treated on the basis of dynamical procedure, which presents the state of motion by means of mean position and mean amplitude of vibration. The divergent statistical integral comes here not into consideration. The free energy is represented through mean atomic displacement and developed in power series, retaining fourth degree. The graphs show that at certain temperature, the minimum in free energy disappears, and the atom escapes from the potential pit. A simple atomic model that represents this phenomenon is proposed and the influence of model dimension and pressure on melting temperature will be presented.展开更多
There is always need for secure transmission of information and simultaneously compact-size photonic circuits. This can be achieved if surface plasmon-polaritons(SPPs) are used as source of information, and the reduce...There is always need for secure transmission of information and simultaneously compact-size photonic circuits. This can be achieved if surface plasmon-polaritons(SPPs) are used as source of information, and the reduced hacking as the transmission phenomenon. In this article, an SPP-based reduced hacking scheme is presented at interface between atomic medium and metallic conductor. The SPP propagation is manipulated with conductivity of the metal. The delay or advance of the SPP is found to create nanosecond time gap which can be used for storing and sending the information safely. The reduced hacking is further modified with conductivity of the metal and the control parameters of the atomic medium.展开更多
The feasibility of population transfer from a populated level via an intermediate state to the target level driven by few-cycle pulses is theoretically discussed. The processes of on- or far-resonance stimulated Raman...The feasibility of population transfer from a populated level via an intermediate state to the target level driven by few-cycle pulses is theoretically discussed. The processes of on- or far-resonance stimulated Raman scattering with sequential or simultaneous ultrashort pulses are investigated respectively. We find that the ultrashort pulses with about two optical cycles can be used to realize the population operation. This suggests that the population transfer can be completed in the femtosecond time scale. At the same time, our simulation shows that the signal of the carrier-envelope-phase-dependent effect can be enlarged due to quantum interference in some conditions. Our theoretic study may promote the research on the coherent control via ultrashort pulses in the related fields.展开更多
The quantitative structure-activity relationship (QSAR) of 30 acylthiourea analogues was studied by using a three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) to describe their chemical s...The quantitative structure-activity relationship (QSAR) of 30 acylthiourea analogues was studied by using a three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) to describe their chemical structures. The descriptors obtained were screened by stepwise multiple regression (SMR) and a partial least-squares (PLS) regression model was built. The correlation coefficient r^2 of the established model and Leave-One-Out (LOO) Cross-Validation (CV) correlation coefficient q^2 are 0.624 and 0.409, respectively. The model has favorable stability and good prediction capability, and further QSAR analysis showed that hydrophobic interaction has the most important effect on the activity of acylthiourea analogue and 3D-HoVAIF was applicable to the molecular structural characterization and biologicalactivity prediction.展开更多
A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure ...A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure activity relationship(QSAR) model was built by partial least-squares(PLS) regression.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The correlation coefficients of established PLS model,leave-one-out(LOO) cross-validation,and predicted values versus experimental ones of external samples were R2=0.899,RCV2=0.854 and Qext2=0.868,respectively.These values indicated that the built PLS model had both favorable estimation stability and good prediction capabilities.Furthermore,the satisfactory results showed that 3D-HoVAIF could preferably express the information related to the biological activity of benzoxazinone derivatives.展开更多
We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at dif...We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom surface distances. We find that different types of trajecto- ries contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy, the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields.展开更多
This paper theoretically investigates the microwave transition spectrum of STRb atomic D1 line with specially prepared atomic state in a Hanle configuration. The approximate analytical results have shown that the 0-0 ...This paper theoretically investigates the microwave transition spectrum of STRb atomic D1 line with specially prepared atomic state in a Hanle configuration. The approximate analytical results have shown that the 0-0 transition spectral line has the highest contrast and can be applied to microwave frequency standards.展开更多
The electrons of metallic iron atoms all have wave-particle duality.The electrons of each iron atom are particles in the liquid state,the solid state is fluctuating.The wave-particle duality parameters of each iron at...The electrons of metallic iron atoms all have wave-particle duality.The electrons of each iron atom are particles in the liquid state,the solid state is fluctuating.The wave-particle duality parameters of each iron atom electron are different,there is a small difference,the same is gathered into one,become a single grain.The parameters of wave-particle duality are different.The crystallization temperature of liquid state is different from that of solid。展开更多
Curcumin and nigellin-1.1’s atomic interactions on brain antitumor molecule are significant in medical research. For the first time, Molecular dynamic simulations based on Newton’s law were utilized to predict the d...Curcumin and nigellin-1.1’s atomic interactions on brain antitumor molecule are significant in medical research. For the first time, Molecular dynamic simulations based on Newton’s law were utilized to predict the destruction of brain antitumor structure by curcumin and nigellin-1.1 with structure in the current research. To depict the atomic development of curcumin, nigellin-1.1, and brain antitumor molecule, DREIDING and universal force fields are used to model C, H, N, O, and S atoms. We calculate the total energy, center of mass distance, diffusion coefficient, and volume of atomic structures to explain the atomic interaction between these structures. The calculated rates for these physical parameters reveal an attraction force between curcumin and brain antitumor structure, as well as nigellin-1.1 and brain antitumor structure, with COM distances between curcumin and brain antitumor structures varying from 1.16 Å to 1.14 Å after 2 ns, and COM distances between nigellin-1.1 structures varying from 2.01 Å to 1.93 Å after 2 ns. The volume of a brain antitumor increases structurally from 1.33×10^(6) Å^(3) to 2.24×10^(6) Å^(3) following atomic contact with curcumin, and increases structurally from 1.33×10^(6) Å^(3) to 2.83×10^(6) Å^(3) after atomic interaction with nigellin-1.1, indicating tumor eradication.展开更多
Proposal for the teleportation of two-atom state is presented. It is based on the simultaneous interaction of two two-level atoms with a single-mode cavity with a filed of n photons. In the proposed scheme, two pairs ...Proposal for the teleportation of two-atom state is presented. It is based on the simultaneous interaction of two two-level atoms with a single-mode cavity with a filed of n photons. In the proposed scheme, two pairs of EPR state are used as quantum channel to teleport an unknown two-atom state. The completed time is greatly reduced and cavity field is not required to be detected are shown to be the distinct features of the presented scheme.展开更多
Strain engineering has been leveraged to tune the thermal properties of materials by introducing stress and manipulating local atomic vibrations,which poses a detrimental threat to the mechanical integrity of material...Strain engineering has been leveraged to tune the thermal properties of materials by introducing stress and manipulating local atomic vibrations,which poses a detrimental threat to the mechanical integrity of materials and structures and limits the capability to regulate thermal transport.Here,we report that the interfacial thermal conductance of graphene on a soft substrate can be regulated by harnessing wrinkling and folding morphologies of graphene,which could be well controlled by managing the prestrain applied to the substrate.These obtained graphene structures are free of significant in-plane mechanical strain and only have infinitesimal distortion to the intrinsic thermal properties of graphene.The subsequent thermal transport studies with pumpprobe non-equilibrium molecular dynamics(MD)simulation show that the thermal conductance between graphene structures and the substrate is uniquely determined by the morphological features of graphene.The atomic density of interfacial interactions,energy dissipation,and temperature distribution are elucidated to understand the thermal transport across each graphene structure and substrate.We further demonstrate that the normalized thermal conductance decreases monotonically with the increase of the equivalent mechanical strain,showing the capability of mechanically programmable interfacial thermal conductance in a broad range of strains.Application demonstrations in search of on-demand thermal conductance are conducted by controlling the geometric morphologies of graphene.This study lays a foundation for regulating interfacial thermal conductance through mechanical loading-induced geometric deformation of materials on a soft substrate,potentially useful in the design of flexible and stretchable structures and devices with tunable thermal management performance.展开更多
基金supported by the Ministry of Science and Technology of China (2010DFA32680)the National Natural Science Foundation of China (21005062)the Fundamental Research Funds for the Central Universities (CDJRC10220010)
文摘Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.
基金Supported by the Fund of National High Technology Research and Development Program (863 Program, No. 2006AA02Z312)
文摘Study on the quantitative structure-activity relationship (QSAR) of 26 compounds, N-[5-(2-furanyl)-2-methyl-4-oxo-4H-thieno[2,3-d]pyrimidin-3-yl]-carboxamide and 3-substituted- 5-(2-furanyl)-2-methyl-3H-thieno[2,3-d]pyrimidin-4-ones, with three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) was carried out. SMR-PLS QSAR models have been created and good correlation coefficients and cross-validated correlation coefficients were obtained. The result shows that the models have good prediction capability and favorable stability and the 3D-HoVAIF is applicable to the molecular structural characterization and biological activity prediction.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921603Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China under Grant No IRT13076+2 种基金the State Key Program of the National Natural Science of China under Grant No 11434007the National Natural Science of China under Grant Nos 11274209,61475090,60378039 and 61378013Shanxi Scholarship Council of China(2014-009)
文摘Electromagnetically induced transparency (EIT) is investigated in a system of cold, interacting cesium Rydberg atoms. The utilized cesium levels 6S1/2, 6P3/2 and nD5/2 constitute a cascade three-level system, in which a coupling laser drives the Rydberg transition, and a probe laser detects the EIT signal on the 6S1/2 to 6/23/2 transition. Rydberg EIT spectra are found to depend on the strong interaction between the Rydberg atoms. Diminished EIT transparency is obtained when the Rabi frequency of the probe laser is increased, whereas the corresponding linewidth remains unchanged. To model the system with a three-level Linclblad equation, we introduce a Rydberg-level dephasing rate γ3 = κ×(P33/Ωp)^2, with a value κ that depends on the ground-state atom density and the Rydberg level, The simulation results are largely consistent with the measurements. The experiments, in which the principal quantum number is varied between 30 and 43, demonstrate that the EIT reduction observed at large Ωp is due to the strong interactions between the Rydberg atoms.
基金Supported by the National Natural Science Foundation of China under Grant No 11247032the Natural Science Foundation of Jiangxi Province under Grant Nos 20151BAB202012 and 20151BAB212004the Scientific Research Foundation of the Jiangxi Provincial Education Department under Grant No GJJ160633
文摘Fano-like quantum routing of single photons in a system with two waveguides coupled to two collocated atoms is investigated theoretically. Using a full quantum theory in real space, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the atomic dipole-dipole interaction, an evident Fano-line shape emerges in the scattering spectra of the single-dot configuration system. Moreover, Fano resonance can also be achieved by varying the atom-waveguide coupling strength and atomic detuning, in the presence of the atomic dipole-dipole interaction. Therefore, the atomic dipole-dipole interaction may be utilized as a possible way to control spectral Fano-like resonance. The feasibility with the experimental waveguide channels is also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874011)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.
文摘The generation of nonclassical photons via quantum light–matter interactions is of fundamental importance in quantum optics.Here we investigate steady-state two-photon correlation function and photon squeezing in an open anisotropic Rabi lattice by applying quantum dressed master equation embedded with the mean-field approximation.The expanded antibunching effect of photons due to anisotropic qubit–photon interaction,is strongly suppressed by including inter-site photon tunneling,whereas the giant photon bunching keeps robust with weak inter-site photon tunneling strength.The microscopic processes for photon antibunching and bunching effects are presented based on incoherent transitions between eigenstates.The photon squeezing is also analyzed under the influences of qubit–photon coupling and anisotropic factor.The quadrature squeezing shows persistency by tuning on the inter-site photon tunneling,and becomes dramatically pronounced at the small anisotropic factor.Moreover,the increasing number of qubits significantly enhances quadrature squeezing with strong qubit–photon interaction.We hope such results may provide physical insights into efficient generation and manipulation of nonclassical features of photons in quantum light–matter interacting lattice systems.
基金EPSRC(EP/K018345/1,EP/T024844/1,EP/V055208/1)the National Natural Science Foundation of China(NSFC No.52035009)the Royal Society-NSFC international exchange programme(IECNSFC181474)to provide financial support to this research。
文摘Atomic and close-to-atomic scale manufacturing(ACSM)represents techniques for manufacturing high-end products in various fields,including future-generation computing,communication,energy,and medical devices and materials.In this paper,the theoretical boundary between ACSM and classical manufacturing is identified after a thorough discussion of quantum mechanics and their effects on manufacturing.The physical origins of atomic interactions and energy beams-matter interactions are revealed from the point view of quantum mechanics.The mechanisms that dominate several key ACSM processes are introduced,and a current numerical study on these processes is reviewed.A comparison of current ACSM processes is performed in terms of dominant interactions,representative processes,resolution and modelling methods.Future fundamental research is proposed for establishing new approaches for modelling ACSM,material selection or preparation and control of manufacturing tools and environments.This paper is by no means comprehensive but provides a starting point for further systematic investigation of ACSM fundamentals to support and accelerate its industrial scale implementation in the near future.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences and the National Basic Research Program of China
文摘Transient coherent oscillations in a closed A system under far-off resonant Raman fields were investigated theoreti- cally. It has been found that the coherent superposition of the ground states can be formed due to the absorption even for initial maximal mixed ground states. The absorption oscillates with a period depending on the two-photon detuning when the system is initially in a transparent state and the two-photon Raman detuning is suddenly changed. The amplitude of the absorption decays with the decay rate of the ground states, which is different from the case when the lasers are applied resonantly. These transient coherent oscillations can be used to measure the relaxation rate of the ground states.
文摘The resonance interaction of two-state atoms with single mode field is described theoretically by using the semi-classical theory and Jaynes-Cummings model. The nonlinear characteristics of this system are calculated by using FFT and Runge-Kutta methods. The chaotic strange attractors in this system are obtained from the numerical results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12264045,12164042,11764039,11847304,and 11865014)the Natural Science Foundation of Gansu Province (Grant No.17JR5RA07620JR5RA526)+2 种基金the Scientific Research Project of Gansu Higher Education (Grant No.2016A-005)the Innovation Capability Enhancement Project of Gansu Higher Education (Grant Nos.2020A146 and 2019A-014)the Creation of Science and Technology of Northwest Normal University (Grant No.NWNULKQN-18-33)。
文摘Atomic interaction leads to dephasing and damping of Bloch oscillations(BOs)in optical lattices,which limits observation and applications of BOs.How to obtain persistent BOs is particularly important.Here,the nonlinear Bloch dynamics of the Bose-Einstein condensate with two-body and three-body interactions in deep optical lattices is studied.The damping rate induced by interactions is obtained.The damping induced by two-body interaction plays a dominant role,while the damping induced by three-body interaction is weak.However,when the two-body and three-body interactions satisfy a threshold,long-lived coherent BOs are observed.Furthermore,the Bloch dynamics with periodical modulation of linear force is studied.The frequencies of linear force corresponding to resonance and pseudoresonance are obtained,and rich dynamical phenomena,i.e.,stable and strong BOs,drifting and dispersion of wave packet,are predicted.The controllable Bloch dynamics is provided with the periodic modulation of the linear force.
文摘The anharmonic vibrator, whose expression of potential energy contains second and third powers of coordinates, is treated on the basis of dynamical procedure, which presents the state of motion by means of mean position and mean amplitude of vibration. The divergent statistical integral comes here not into consideration. The free energy is represented through mean atomic displacement and developed in power series, retaining fourth degree. The graphs show that at certain temperature, the minimum in free energy disappears, and the atom escapes from the potential pit. A simple atomic model that represents this phenomenon is proposed and the influence of model dimension and pressure on melting temperature will be presented.
文摘There is always need for secure transmission of information and simultaneously compact-size photonic circuits. This can be achieved if surface plasmon-polaritons(SPPs) are used as source of information, and the reduced hacking as the transmission phenomenon. In this article, an SPP-based reduced hacking scheme is presented at interface between atomic medium and metallic conductor. The SPP propagation is manipulated with conductivity of the metal. The delay or advance of the SPP is found to create nanosecond time gap which can be used for storing and sending the information safely. The reduced hacking is further modified with conductivity of the metal and the control parameters of the atomic medium.
基金Project supported by the National Natural Science Foundation of China(Grant No.61008016)the Natural Science Foundation in Shaanxi Province,China(Grant No.2010JQ1002)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20106101120020)
文摘The feasibility of population transfer from a populated level via an intermediate state to the target level driven by few-cycle pulses is theoretically discussed. The processes of on- or far-resonance stimulated Raman scattering with sequential or simultaneous ultrashort pulses are investigated respectively. We find that the ultrashort pulses with about two optical cycles can be used to realize the population operation. This suggests that the population transfer can be completed in the femtosecond time scale. At the same time, our simulation shows that the signal of the carrier-envelope-phase-dependent effect can be enlarged due to quantum interference in some conditions. Our theoretic study may promote the research on the coherent control via ultrashort pulses in the related fields.
基金supported by the National High-tech Research Program (the "863" Program, No. 2006AA02Z312)Innovative Group Program for Graduates of Chongqing University, Science and Innovation Fund (No. 200711C1A0010260)
文摘The quantitative structure-activity relationship (QSAR) of 30 acylthiourea analogues was studied by using a three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) to describe their chemical structures. The descriptors obtained were screened by stepwise multiple regression (SMR) and a partial least-squares (PLS) regression model was built. The correlation coefficient r^2 of the established model and Leave-One-Out (LOO) Cross-Validation (CV) correlation coefficient q^2 are 0.624 and 0.409, respectively. The model has favorable stability and good prediction capability, and further QSAR analysis showed that hydrophobic interaction has the most important effect on the activity of acylthiourea analogue and 3D-HoVAIF was applicable to the molecular structural characterization and biologicalactivity prediction.
基金supported by the Natural Science Foundation of Shaanxi Province (2009JQ2005)Foundation of Educational Commission of Shaanxi Province (09JK358) Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure activity relationship(QSAR) model was built by partial least-squares(PLS) regression.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The correlation coefficients of established PLS model,leave-one-out(LOO) cross-validation,and predicted values versus experimental ones of external samples were R2=0.899,RCV2=0.854 and Qext2=0.868,respectively.These values indicated that the built PLS model had both favorable estimation stability and good prediction capabilities.Furthermore,the satisfactory results showed that 3D-HoVAIF could preferably express the information related to the biological activity of benzoxazinone derivatives.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774162)
文摘We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom surface distances. We find that different types of trajecto- ries contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy, the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX3-SYW-405)the National Fundamental Research Program of China (Grant Nos. 2005CB724507 and 2006CB921202)
文摘This paper theoretically investigates the microwave transition spectrum of STRb atomic D1 line with specially prepared atomic state in a Hanle configuration. The approximate analytical results have shown that the 0-0 transition spectral line has the highest contrast and can be applied to microwave frequency standards.
文摘The electrons of metallic iron atoms all have wave-particle duality.The electrons of each iron atom are particles in the liquid state,the solid state is fluctuating.The wave-particle duality parameters of each iron atom electron are different,there is a small difference,the same is gathered into one,become a single grain.The parameters of wave-particle duality are different.The crystallization temperature of liquid state is different from that of solid。
文摘Curcumin and nigellin-1.1’s atomic interactions on brain antitumor molecule are significant in medical research. For the first time, Molecular dynamic simulations based on Newton’s law were utilized to predict the destruction of brain antitumor structure by curcumin and nigellin-1.1 with structure in the current research. To depict the atomic development of curcumin, nigellin-1.1, and brain antitumor molecule, DREIDING and universal force fields are used to model C, H, N, O, and S atoms. We calculate the total energy, center of mass distance, diffusion coefficient, and volume of atomic structures to explain the atomic interaction between these structures. The calculated rates for these physical parameters reveal an attraction force between curcumin and brain antitumor structure, as well as nigellin-1.1 and brain antitumor structure, with COM distances between curcumin and brain antitumor structures varying from 1.16 Å to 1.14 Å after 2 ns, and COM distances between nigellin-1.1 structures varying from 2.01 Å to 1.93 Å after 2 ns. The volume of a brain antitumor increases structurally from 1.33×10^(6) Å^(3) to 2.24×10^(6) Å^(3) following atomic contact with curcumin, and increases structurally from 1.33×10^(6) Å^(3) to 2.83×10^(6) Å^(3) after atomic interaction with nigellin-1.1, indicating tumor eradication.
文摘Proposal for the teleportation of two-atom state is presented. It is based on the simultaneous interaction of two two-level atoms with a single-mode cavity with a filed of n photons. In the proposed scheme, two pairs of EPR state are used as quantum channel to teleport an unknown two-atom state. The completed time is greatly reduced and cavity field is not required to be detected are shown to be the distinct features of the presented scheme.
基金This work was supported by the Office of Naval Research Young Investigator Program(No.N00014-20-1-2611)This work in part used the Extreme Science and Engineering Discovery Environment(XSEDE)through allocation TGMCH210002which was supported by the National Science Foundation(No.ACI-1548562).
文摘Strain engineering has been leveraged to tune the thermal properties of materials by introducing stress and manipulating local atomic vibrations,which poses a detrimental threat to the mechanical integrity of materials and structures and limits the capability to regulate thermal transport.Here,we report that the interfacial thermal conductance of graphene on a soft substrate can be regulated by harnessing wrinkling and folding morphologies of graphene,which could be well controlled by managing the prestrain applied to the substrate.These obtained graphene structures are free of significant in-plane mechanical strain and only have infinitesimal distortion to the intrinsic thermal properties of graphene.The subsequent thermal transport studies with pumpprobe non-equilibrium molecular dynamics(MD)simulation show that the thermal conductance between graphene structures and the substrate is uniquely determined by the morphological features of graphene.The atomic density of interfacial interactions,energy dissipation,and temperature distribution are elucidated to understand the thermal transport across each graphene structure and substrate.We further demonstrate that the normalized thermal conductance decreases monotonically with the increase of the equivalent mechanical strain,showing the capability of mechanically programmable interfacial thermal conductance in a broad range of strains.Application demonstrations in search of on-demand thermal conductance are conducted by controlling the geometric morphologies of graphene.This study lays a foundation for regulating interfacial thermal conductance through mechanical loading-induced geometric deformation of materials on a soft substrate,potentially useful in the design of flexible and stretchable structures and devices with tunable thermal management performance.