Correction to:J.Iron Steel Res.Int.(2025)32:144-158 https://doi.org/10.1007/s42243-024-01416-x The publication of this article unfortunately contained mistakes.Only one corresponding author was named instead of three....Correction to:J.Iron Steel Res.Int.(2025)32:144-158 https://doi.org/10.1007/s42243-024-01416-x The publication of this article unfortunately contained mistakes.Only one corresponding author was named instead of three.The corrected corresponding authors are given below.展开更多
Hardenability significantly impacts the distortion of gear during heat treatment,correlated to the uniformity of solute distribution in steel matrix.The experimental analysis was conducted on the macrostructure,solute...Hardenability significantly impacts the distortion of gear during heat treatment,correlated to the uniformity of solute distribution in steel matrix.The experimental analysis was conducted on the macrostructure,solute distribution,dendrite structure,and rod hardenability of 20CrMnTiH gear steel in continuously cast blooms and hot roller rods.The evaluation approach by the standards for the hardenability of gear steel rods and the corresponding blooms was analyzed,and the inheritance mechanism from solidification segregation to hardenability fluctuation of gear steel was revealed.The results indicate that semi-macroscopic spot segregation located in the equiaxed zone exhibits larger size,higher solute enrichment,and worse solute homogeneity,leading to significant solute fluctuations in the blooms and hardenability fluctuation in the rods.By increasing the liquid steel superheat from 35 to 40℃,reducing the mold electromagnetic stirring from 300 to 100 A,and implementing the soft reduction(SR)of 7 mm at the solidification end,the equiaxed ratio of the strand decreased from 26.42%to 6.69%.Consequently,the solute fluctuation range and standard deviation decrease significantly in the transverse section,while the maximum segregation ratio,average fluctuation range,and average standard deviation of solutes C,Cr,and Mn in the spot segregation decrease at the same time.At the meanwhile,the equiaxed ratio of the rod decreased from 24.89%to 4.09%,and the structure of the hardenability detection zone was transformed from equiaxed crystals to columnar crystals.Furthermore,the solute fluctuation range and standard deviation in the transverse section decreased,while the homogeneity in spot segregation was also improved.The hardness difference of A and B surfaces at J9 and J15 positions was smaller than 2 HRC,meeting the qualification standard for hardenability.展开更多
We have experimentally determined the as-cast structures of semi-continuous casting 7075 aluminum alloy obtained in the pres-ence of dual-frequency electromagnetic field. Results suggest that the use of dual-frequency...We have experimentally determined the as-cast structures of semi-continuous casting 7075 aluminum alloy obtained in the pres-ence of dual-frequency electromagnetic field. Results suggest that the use of dual-frequency electromagnetic field during the semi-continuous casting process of 7075 aluminum alloy ingots reduces the thickness of the surface segregation layer, increases the height of the melt menis-cus, enhances the surface quality of the ingot, and changes the surface morphology of the melt pool. Moreover, low-frequency electromag-netic field was found to show the most obvious influence on improving the as-cast structure because of its high permeability in conductors.展开更多
The structure and morphology of as-cast Fe-13wt-% Mo-0.8wt-% C alloy have been ob- served under SEM and TEM.Few δ-eutectoid but certain minor eutectics appear in the core of dendrites of the alloy.The eutectic carbid...The structure and morphology of as-cast Fe-13wt-% Mo-0.8wt-% C alloy have been ob- served under SEM and TEM.Few δ-eutectoid but certain minor eutectics appear in the core of dendrites of the alloy.The eutectic carbide is found as skeleton M_6C while the eutectoid carbide as rodlet M_6C.展开更多
The as-cast structures of semi-continuous casting aluminum alloy under dual-frequency electromagnetic field were experimental investigated.The results showed that the electromagnetic fields with different frequency ha...The as-cast structures of semi-continuous casting aluminum alloy under dual-frequency electromagnetic field were experimental investigated.The results showed that the electromagnetic fields with different frequency have different function for improving the cast structure of aluminum alloy casting.Imposing medium frequency electromagnetic field can change the surface morphology of melt pool in the casting process,increase the height of melt meniscus,improve the ingot's surface quality,and reduce the thickness of surface segregation.The low frequency electromagnetic field is most obvious to as-cast structure improvement effect because of its high permeability in conductance material.Imposing low-frequency electromagnetic field can change flow pattern and temperature field in the melt,strengthen the heat transfer and mass transfer in the melt,decrease the depth of the sttmp and reduce the temperature gradient.Thus,the as-cast structures are greatly refined,which can lead to the fine equiaxed as-cast structures throughout the cross-section of the ingot.展开更多
The temperature dependence of the viscosity of liquid Al-12wt.%Sn-4wt.%Si was studied with a hightemperature viscosity apparatus.Anomalous changes of viscosity of the melt were found at 1,103 K and 968 K in the coolin...The temperature dependence of the viscosity of liquid Al-12wt.%Sn-4wt.%Si was studied with a hightemperature viscosity apparatus.Anomalous changes of viscosity of the melt were found at 1,103 K and 968 K in the cooling process,which indicates anomalous structural changes of the melt.It is calculated that the anomalous structural change is associated with an abrupt decrease of atomic clusters'size and activation energy in the melt.According to the temperature of the anomalous structural changes,melt heat treatment process(quenching from superheat to pouring temperature) was performed on Al-12wt.%Sn-4wt.%Si melt prior to pouring,aimed to keep the small atomic clusters from higher temperature to lower pouring temperature.The results suggest that relatively small atomic clusters at the pouring temperature in the melt could generate a deep under-cooling of nucleation in the subsequent solidification process,and refine the as-cast structure.After being quenched from superheating to pouring temperature,the relatively small atomic clusters,especially the Si-Si clusters in the melt will grow to equilibrium state(relatively big atomic clusters) with holding time,resulting in the prominent coarsening of the Si morphology in the as-cast structure.展开更多
The valence electron structure of alloying austenite of 3C-15Cr high chromium white cast iron with different Mn contents from 1% to 6% is analyzed by BLD method and EET. Results show that the addition of Mn has major ...The valence electron structure of alloying austenite of 3C-15Cr high chromium white cast iron with different Mn contents from 1% to 6% is analyzed by BLD method and EET. Results show that the addition of Mn has major influence on the valence electron structure of the alloying austenite, especially on that of Fe-C, Fe-C-Cr and Fe-C-Cr-Mn unit cells of it. The effect becomes weak when Mn content is over 4%. Based on the effect of n~, F~~, the weighting of each unit cell and the degree of undercooling on phase transition of the aus- tenite, we can calculate the retained austenite content of as-cast structure of the high chromium white cast iron. The calculation results coincide well with those of the experiment. The phase transition characters of the austenite in high chromium white cast iron can be forecasted through valence electron structure analysis of alloying austenite by BLD method and EET on the basis of Fe-C-Cr equilibrium phase diagram.展开更多
This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior...This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.展开更多
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'...Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.展开更多
In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented...In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented product FGPA-G 2-H on Aβ25-35-induced PC 12 cells were explored.The structure of GPA-G 2-H was determined by means of zeta potential analysis,FTIR,HPLC,XRD,GC-MS and NMR.The backbone of GPA-G 2-H was mainly composed of→4)-α-D-Glcp-(1→with branches substituted at O-3.Notably,GPA-G 2-H was degraded by intestinal microbiota in vitro with total sugar content and pH value decreasing,and short-chain fatty acids(SCFAs)increasing.Moreover,GPA-G 2-H significantly promoted the proliferation of Lactobacillus,Muribaculaceae and Weissella,thereby making positive alterations in intestinal microbiota composition.Additionally,FGPA-G 2-H activated the Nrf 2/HO-1 signaling pathway,enhanced HO-1,NQO 1,SOD and GSH-Px,while inhabited Keap 1,MDA and LDH,which alleviated Aβ-induced oxidative stress in PC 12 cells.These provide a solid theoretical basis for the further development of ginseng polysaccharides as functional food and antioxidant drugs.展开更多
In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The ...In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ).展开更多
Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-ins...Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-inspired lattice structures feature a square-grid 2D lattice with double diagonal bracings and are additively manufactured via digital light processing(DLP).The collapse strength and energy absorption capacity of sea sponge lattice structures are evaluated under various impact conditions and are compared to those of their constituent square-grid and double diagonal lattices.This study demonstrates that sea sponge lattices can achieve an 11-fold increase in energy absorption compared to the square-grid lattice,due to the stabilizing effect of the double diagonal bracings prompting the structure to collapse layer-bylayer under impact.By adjusting the thickness ratio in the sea sponge lattice,up to 76.7%increment in energy absorption is attained.It is also shown that sea-sponge lattices outperform well-established energy-absorbing materials of equal weight,such as hexagonal honeycombs,confirming their significant potential for impact mitigation.Additionally,this research highlights the enhancements in energy absorption achieved by adding a small amount(0.015 phr)of Multi-Walled Carbon Nanotubes(MWCNTs)to the photocurable resin,thus unlocking new possibilities for the design of innovative lightweight structures with multifunctional attributes.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,...Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,understanding the oxidation behavior of nuclear graphite is essential for reactor safety.The influence of oxidation involves multiple factors,including temperature,sample size,oxidant,impurities,filler type and size,etc.The size of the filler particles plays a crucial role in this study.Five ultrafine-and superfine-grained nuclear graphite samples(5.9-34.4μm)are manufactured using identical raw materials and manufacturing processes.Isothermal oxidation tests conducted at 650℃-750℃ are used to study the oxidation behavior.Additionally,comprehensive characterization is performed to analyze the crystal structure,surface morphology,and nanoscale to microscale pore structure of the samples.Results indicate that oxidation behavior cannot be predicted solely based on filler grain size.Reactive site concentration,characterized by active surface area,dominates the chemical reaction kinetics,whereas pore tortuosity,quantified by the structural parameterΨ,plays a key role in regulating oxidant diffusion.These findings clarify the dual role of microstructure in oxidation mechanisms and establish a theoretical and experimental basis for the design of high-performance nuclear graphite capable of long-term service in high-temperature gas-cooled reactors.展开更多
In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honey...In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.展开更多
Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes...Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass.展开更多
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g...To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled t...Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.展开更多
Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density...Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density.However,their practical commercialization is hindered by critical challenges on the anode side,including dendrite growth and parasitic reactions at the anode/electrolyte interface.Recent studies highlight that rational electrolyte structure engineering offers an effective route to mitigate these issues and strengthen the electrochemical performance of the zinc metal anode.In this review,we systematically summarize state-of-the-art strategies for electrolyte optimization,with a particular focus on the zinc salts regulation,electrolyte additives,and the construction of novel electrolytes,while elucidating the underlying design principles.We further discuss the key structure–property relationships governing electrolyte behavior to provide guidance for the development of next-generation electrolytes.Finally,future perspectives on advanced electrolyte design are proposed.This review aims to serve as a comprehensive reference for researchers exploring high-performance electrolyte engineering in AZIBs.展开更多
文摘Correction to:J.Iron Steel Res.Int.(2025)32:144-158 https://doi.org/10.1007/s42243-024-01416-x The publication of this article unfortunately contained mistakes.Only one corresponding author was named instead of three.The corrected corresponding authors are given below.
基金supported by the Weifang Science and Technology Development Plan Project in China(No.2023ZJ1166).
文摘Hardenability significantly impacts the distortion of gear during heat treatment,correlated to the uniformity of solute distribution in steel matrix.The experimental analysis was conducted on the macrostructure,solute distribution,dendrite structure,and rod hardenability of 20CrMnTiH gear steel in continuously cast blooms and hot roller rods.The evaluation approach by the standards for the hardenability of gear steel rods and the corresponding blooms was analyzed,and the inheritance mechanism from solidification segregation to hardenability fluctuation of gear steel was revealed.The results indicate that semi-macroscopic spot segregation located in the equiaxed zone exhibits larger size,higher solute enrichment,and worse solute homogeneity,leading to significant solute fluctuations in the blooms and hardenability fluctuation in the rods.By increasing the liquid steel superheat from 35 to 40℃,reducing the mold electromagnetic stirring from 300 to 100 A,and implementing the soft reduction(SR)of 7 mm at the solidification end,the equiaxed ratio of the strand decreased from 26.42%to 6.69%.Consequently,the solute fluctuation range and standard deviation decrease significantly in the transverse section,while the maximum segregation ratio,average fluctuation range,and average standard deviation of solutes C,Cr,and Mn in the spot segregation decrease at the same time.At the meanwhile,the equiaxed ratio of the rod decreased from 24.89%to 4.09%,and the structure of the hardenability detection zone was transformed from equiaxed crystals to columnar crystals.Furthermore,the solute fluctuation range and standard deviation in the transverse section decreased,while the homogeneity in spot segregation was also improved.The hardness difference of A and B surfaces at J9 and J15 positions was smaller than 2 HRC,meeting the qualification standard for hardenability.
基金financially supported by the National Natural Science Foundation of China(No.51004036)the Fundamental Research Funds for the Central Universities(No.N120309002)
文摘We have experimentally determined the as-cast structures of semi-continuous casting 7075 aluminum alloy obtained in the pres-ence of dual-frequency electromagnetic field. Results suggest that the use of dual-frequency electromagnetic field during the semi-continuous casting process of 7075 aluminum alloy ingots reduces the thickness of the surface segregation layer, increases the height of the melt menis-cus, enhances the surface quality of the ingot, and changes the surface morphology of the melt pool. Moreover, low-frequency electromag-netic field was found to show the most obvious influence on improving the as-cast structure because of its high permeability in conductors.
文摘The structure and morphology of as-cast Fe-13wt-% Mo-0.8wt-% C alloy have been ob- served under SEM and TEM.Few δ-eutectoid but certain minor eutectics appear in the core of dendrites of the alloy.The eutectic carbide is found as skeleton M_6C while the eutectoid carbide as rodlet M_6C.
基金Item Sponsored by National Natural Science Foundation of China[No.51004036]
文摘The as-cast structures of semi-continuous casting aluminum alloy under dual-frequency electromagnetic field were experimental investigated.The results showed that the electromagnetic fields with different frequency have different function for improving the cast structure of aluminum alloy casting.Imposing medium frequency electromagnetic field can change the surface morphology of melt pool in the casting process,increase the height of melt meniscus,improve the ingot's surface quality,and reduce the thickness of surface segregation.The low frequency electromagnetic field is most obvious to as-cast structure improvement effect because of its high permeability in conductance material.Imposing low-frequency electromagnetic field can change flow pattern and temperature field in the melt,strengthen the heat transfer and mass transfer in the melt,decrease the depth of the sttmp and reduce the temperature gradient.Thus,the as-cast structures are greatly refined,which can lead to the fine equiaxed as-cast structures throughout the cross-section of the ingot.
基金supported by the Key Subject (Laboratory) Research Foundation of Shandong Provincethe Natural Science Foundation of China (No.50871047)+1 种基金the Encouragement Foundation for Distinguished Young Scientist of Shandong Province (No. 2008BS04018)the Natural Science Foundation of Shandong Province (No.Y2006F55 and No.Y2007F69)
文摘The temperature dependence of the viscosity of liquid Al-12wt.%Sn-4wt.%Si was studied with a hightemperature viscosity apparatus.Anomalous changes of viscosity of the melt were found at 1,103 K and 968 K in the cooling process,which indicates anomalous structural changes of the melt.It is calculated that the anomalous structural change is associated with an abrupt decrease of atomic clusters'size and activation energy in the melt.According to the temperature of the anomalous structural changes,melt heat treatment process(quenching from superheat to pouring temperature) was performed on Al-12wt.%Sn-4wt.%Si melt prior to pouring,aimed to keep the small atomic clusters from higher temperature to lower pouring temperature.The results suggest that relatively small atomic clusters at the pouring temperature in the melt could generate a deep under-cooling of nucleation in the subsequent solidification process,and refine the as-cast structure.After being quenched from superheating to pouring temperature,the relatively small atomic clusters,especially the Si-Si clusters in the melt will grow to equilibrium state(relatively big atomic clusters) with holding time,resulting in the prominent coarsening of the Si morphology in the as-cast structure.
文摘The valence electron structure of alloying austenite of 3C-15Cr high chromium white cast iron with different Mn contents from 1% to 6% is analyzed by BLD method and EET. Results show that the addition of Mn has major influence on the valence electron structure of the alloying austenite, especially on that of Fe-C, Fe-C-Cr and Fe-C-Cr-Mn unit cells of it. The effect becomes weak when Mn content is over 4%. Based on the effect of n~, F~~, the weighting of each unit cell and the degree of undercooling on phase transition of the aus- tenite, we can calculate the retained austenite content of as-cast structure of the high chromium white cast iron. The calculation results coincide well with those of the experiment. The phase transition characters of the austenite in high chromium white cast iron can be forecasted through valence electron structure analysis of alloying austenite by BLD method and EET on the basis of Fe-C-Cr equilibrium phase diagram.
文摘This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.
文摘Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.
基金Supported by the National Key Research and Development Program of Traditional Chinese Medicine Modernization Project,China(No.2023YFC3504000)the Science and Technology Development Project of Jilin Province,China(No.20240404043ZP)the Science and Technology Innovation Cooperation Project of Changchun Science and Technology Bureau and Chinese Academy of Sciences,China(No.23SH14)。
文摘In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented product FGPA-G 2-H on Aβ25-35-induced PC 12 cells were explored.The structure of GPA-G 2-H was determined by means of zeta potential analysis,FTIR,HPLC,XRD,GC-MS and NMR.The backbone of GPA-G 2-H was mainly composed of→4)-α-D-Glcp-(1→with branches substituted at O-3.Notably,GPA-G 2-H was degraded by intestinal microbiota in vitro with total sugar content and pH value decreasing,and short-chain fatty acids(SCFAs)increasing.Moreover,GPA-G 2-H significantly promoted the proliferation of Lactobacillus,Muribaculaceae and Weissella,thereby making positive alterations in intestinal microbiota composition.Additionally,FGPA-G 2-H activated the Nrf 2/HO-1 signaling pathway,enhanced HO-1,NQO 1,SOD and GSH-Px,while inhabited Keap 1,MDA and LDH,which alleviated Aβ-induced oxidative stress in PC 12 cells.These provide a solid theoretical basis for the further development of ginseng polysaccharides as functional food and antioxidant drugs.
基金support of the Research Project Supported by Shanxi Scholarship Council of China(2022-040)"Chunhui Plan"Collaborative Research Project by the Ministry of Education of China(HZKY20220507)+2 种基金National Natural Science Foundation of China(52104338)Applied Fundamental Research Programs of Shanxi Province(202303021221036)Shandong Postdoctoral Science Foundation(SDCX-ZG-202303027,SDBX2023054).
文摘In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ).
基金supported by the Khalifa University of Science and Technology internal grants(Nos.2021-CIRA-109,2020-CIRA-007,and 2020-CIRA-024).
文摘Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-inspired lattice structures feature a square-grid 2D lattice with double diagonal bracings and are additively manufactured via digital light processing(DLP).The collapse strength and energy absorption capacity of sea sponge lattice structures are evaluated under various impact conditions and are compared to those of their constituent square-grid and double diagonal lattices.This study demonstrates that sea sponge lattices can achieve an 11-fold increase in energy absorption compared to the square-grid lattice,due to the stabilizing effect of the double diagonal bracings prompting the structure to collapse layer-bylayer under impact.By adjusting the thickness ratio in the sea sponge lattice,up to 76.7%increment in energy absorption is attained.It is also shown that sea-sponge lattices outperform well-established energy-absorbing materials of equal weight,such as hexagonal honeycombs,confirming their significant potential for impact mitigation.Additionally,this research highlights the enhancements in energy absorption achieved by adding a small amount(0.015 phr)of Multi-Walled Carbon Nanotubes(MWCNTs)to the photocurable resin,thus unlocking new possibilities for the design of innovative lightweight structures with multifunctional attributes.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金supported by the National Key Research and Development Program of China(2024YFA1612900)the National Natural Science Foundation of China(Grant No.52103365 and No.12375270)the Guangdong Innovative and Entrepreneurial Research Team Program,China(Grant No.2021ZT09L227).
文摘Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,understanding the oxidation behavior of nuclear graphite is essential for reactor safety.The influence of oxidation involves multiple factors,including temperature,sample size,oxidant,impurities,filler type and size,etc.The size of the filler particles plays a crucial role in this study.Five ultrafine-and superfine-grained nuclear graphite samples(5.9-34.4μm)are manufactured using identical raw materials and manufacturing processes.Isothermal oxidation tests conducted at 650℃-750℃ are used to study the oxidation behavior.Additionally,comprehensive characterization is performed to analyze the crystal structure,surface morphology,and nanoscale to microscale pore structure of the samples.Results indicate that oxidation behavior cannot be predicted solely based on filler grain size.Reactive site concentration,characterized by active surface area,dominates the chemical reaction kinetics,whereas pore tortuosity,quantified by the structural parameterΨ,plays a key role in regulating oxidant diffusion.These findings clarify the dual role of microstructure in oxidation mechanisms and establish a theoretical and experimental basis for the design of high-performance nuclear graphite capable of long-term service in high-temperature gas-cooled reactors.
基金the financial supports from National Key R&D Program for Young Scientists of China(Grant No.2022YFC3080900)National Natural Science Foundation of China(Grant No.52374181)+1 种基金BIT Research and Innovation Promoting Project(Grant No.2024YCXZ017)supported by Science and Technology Innovation Program of Beijing institute of technology under Grant No.2022CX01025。
文摘In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.
基金Supported by the National Key Research Program(No.2024-1129-954-112)National Natural Science Foundation of China(No.52372033)Guangxi Science and Technology Major Program(No.AA24263054)。
文摘Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass.
基金Funded by the National Natural Science Foundation of China(Nos.5226804252468035)。
文摘To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金supported by the Research Project on Strengthening the Construction of an Important Ecological Security Barrier in Northern China by Higher Education Institutions in the Inner Mongolia Autonomous Region(STAQZX202313)the Inner Mongolia Autonomous Region Education Science‘14th Five-Year Plan’2024 Annual Research Project(NGJGH2024635).
文摘Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.
基金supported by the Natural Science Foundation of China(Nos.52125202,52202100,and U24A2065)the Natural Science Foundation of Jiangsu Province(BK20243016)Fundamental Research Funds for the Central Universities,China Postdoctoral Science Foundation(No.2024T171166).
文摘Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density.However,their practical commercialization is hindered by critical challenges on the anode side,including dendrite growth and parasitic reactions at the anode/electrolyte interface.Recent studies highlight that rational electrolyte structure engineering offers an effective route to mitigate these issues and strengthen the electrochemical performance of the zinc metal anode.In this review,we systematically summarize state-of-the-art strategies for electrolyte optimization,with a particular focus on the zinc salts regulation,electrolyte additives,and the construction of novel electrolytes,while elucidating the underlying design principles.We further discuss the key structure–property relationships governing electrolyte behavior to provide guidance for the development of next-generation electrolytes.Finally,future perspectives on advanced electrolyte design are proposed.This review aims to serve as a comprehensive reference for researchers exploring high-performance electrolyte engineering in AZIBs.