期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
Solidification modes and delta-ferrite of two types of 316L stainless steels:a combination of as-cast microstructure and HT-CLSM research 被引量:2
1
作者 Yang Wang Chao Chen +5 位作者 Xiao-yu Yang Zheng-rui Zhang Jian Wang Zhou Li Lei Chen Wang-zhong Mu 《Journal of Iron and Steel Research International》 2025年第2期426-436,共11页
In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The ... In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ). 展开更多
关键词 316L austenitic stainless steel as-cast microstructure High-temperature confocal laser scanning microscopy Solidification mode FERRITE Characterization
原文传递
Influence of Si addition on the microstructure,mechanical and wear proper-ties of as-cast Al_(0.43)CoCrFeNi_(2.1) high-entropy alloys and performance enhancement by cold rolling and annealing
2
作者 Li Wang Junwei Qin +2 位作者 Yanlin Wang Xiaohua Chen Zidong Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第12期3002-3016,共15页
A series of as-cast Si_(x)Al_(0.43)CoCrFeNi_(2.1)(x=0,0.1,0.2,and 0.3)high-entropy alloys(HEAs)was successfully fabricated by va-cuum-assisted melting.The phase constituents,microstructural features,and mechanical pro... A series of as-cast Si_(x)Al_(0.43)CoCrFeNi_(2.1)(x=0,0.1,0.2,and 0.3)high-entropy alloys(HEAs)was successfully fabricated by va-cuum-assisted melting.The phase constituents,microstructural features,and mechanical properties(including hardness,tensile behavior,and wear behavior)of alloys with various Si contents were evaluated.The results revealed that the addition of Si promoted the precipita-tion of a body-centered cubic 1(BCC1)phase enriched in Al,Ni,and Si with a B2-ordered structure.Furthermore,the secondary BCC2 phase was enriched with Cr,Fe,and Si precipitates within the BCC1 matrix.Ultimately,a multiphase face-centered cubic(FCC)/(BCC1/BCC2)structure was formed.The microstructural evolution driven by Si addition significantly enhanced the mechanical properties of the Si_(x)Al_(0.43)CoCrFeNi_(2.1) HEAs.As the Si content increased,the microhardness and tensile strength improved by approxim-ately 42%and 55%,reaching 2.359 GPa and 785 MPa,respectively.The quantitative evaluation of the various strengthening mechanisms indicated that the intrinsic hardness of the FCC matrix and hardening due to BCC1/BCC2 precipitation dominated the overall microhard-ness.The comparison of the energy barriers indicates that BCC2 primarily strengthens the alloy through a shear mechanism rather than an Orowan bypass mechanism.Furthermore,with increasing Si content,reduced friction and wear,together with smoother worn surfaces,re-flect a greatly enhanced wear resistance.After the optimal cold-rolling and 1 h annealing at 800℃,the Si_(0.3)Al_(0.43)CoCrFeNi_(2.1) alloy showed 56%and 62%increases in microhardness and tensile strength,respectively,compared to the as-cast state,reaching 3.68 GPa and 1270 MPa.The enhanced mechanical properties are attributed to the synergistic effects of residual strain hardening by FCC ordering and L1_(2)/BCC precipitation strengthening. 展开更多
关键词 as-cast high-entropy alloys MICROSTRUCTURE mechanical properties wear resistance cold-rolling and annealing strengthening mechanisms
在线阅读 下载PDF
Investigation on the microstructure evolution of high strength and ductility as-cast Mg-9.5Gd-2.3Y-1Zn-0.5Zr alloy via double peak-aging
3
作者 Daiyi Deng Renju Cheng +6 位作者 Bin Jiang Jianbo Li Haijun Wang Yongfeng Zhou Chuntang Yu Haie Zhu Aitao Tang 《Nano Materials Science》 2025年第5期686-696,共11页
This article reports a systematic investigation on the relationship between the microstructure evolution and mechanical properties of as-cast Mg-9.5Gd-2.3Y-1Zn-0.5Zr(VW92,wt.%)alloy during aging treatment.The results ... This article reports a systematic investigation on the relationship between the microstructure evolution and mechanical properties of as-cast Mg-9.5Gd-2.3Y-1Zn-0.5Zr(VW92,wt.%)alloy during aging treatment.The results indicate that the alloy exhibits obvious double peak-aging characteristics at 180℃,200℃,and 220℃;the first peak-aging appeared at 96 h,48 h,and 48 h,respectively,while the second peak-aging occurred at 204 h,180 h,and 180 h,respectively.Moreover,the strengths of the first peak-aging were higher than those of the second peak-aging.Consequently,the first peak-aging at 200℃ achieved the best mechanical properties,with ultimate tensile strength(UTS),yield strength(YS),and elongation(EL)of 380(±2.0)MPa,255(±1.8)MPa,and 12.8(±1.7)%,respectively.While the strength decreased in the second peak-aging,the elongation increased to 17.2(±0.5)%.The first peak-aging strengthening is ascribed to the participation of the nano-β' phases in the matrix and the long period stacking ordered(LPSO)phases at grain boundaries(GBs).Additionally,the second peak-aging strengthening is associated with the emergence of a relatively new 3D structure comprising longchain-like structural phases β'+β'_(F) tβ_(1),γ' phases,and LPSO phases within the grain,combined with the fine and uniform LPSO phases at the GBs. 展开更多
关键词 Mg-Gd-Y-Zn-Zr alloy Microstructure evolution Double peak-aging Heat treatment High strength and ductility as-cast magnesium alloy
在线阅读 下载PDF
Hot processing parameters and microstructure evolution of as-cast Ti-6Cr-5Mo-5V-4Al alloy with millimeter-grade coarse grains
4
作者 Shi-qi GUO Liang HUANG +3 位作者 Chang-min LI Heng-jun LUO Wei XIANG Jian-jun LI 《Transactions of Nonferrous Metals Society of China》 2025年第7期2244-2258,共15页
Hot compression experiments were conducted under conditions of deformation temperatures ranging from 950 to 1150℃,strain rates of 0.001-10 s^(-1),and deformation degrees ranging from 20%to 80%.The hot deformation beh... Hot compression experiments were conducted under conditions of deformation temperatures ranging from 950 to 1150℃,strain rates of 0.001-10 s^(-1),and deformation degrees ranging from 20%to 80%.The hot deformation behavior and microstructure evolution of millimeter-grade coarse grains(MCGs)in the as-cast Ti-6Cr-5Mo-5V-4Al(Ti-6554)alloy were studied,and a hot processing map was established.Under compression along the rolling direction(RD),continuous dynamic recrystallization(CDRX)ensues due to the progressive rotation of subgrains within the MCGs.Along the transverse direction(TD),discontinuous dynamic recrystallization(DDRX)resulting from grain boundary bulging or bridging,occurs on the boundaries of the MCGs.With decreasing strain rate,increasing temperature,and higher deformation degree,dynamic recrystallization becomes more pronounced,resulting in a reduction in the original average grain size.The optimal processing parameters fall within a temperature range of 1050-1150℃,a strain rate of 0.01 s^(-1),and a deformation degree between 40%and 60%. 展开更多
关键词 as-cast Ti-6554 alloy millimeter-grade coarse grains deformation mechanism hot processing parameters
在线阅读 下载PDF
Microstructures,corrosion and mechanical properties of as-cast Mg-Zn-Y-(Gd)alloys 被引量:14
5
作者 史菲 王春青 张忠明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2172-2180,共9页
Long period stacking ordered(LPSO) structure phases were prepared by conventional solidification method in Mg(94)Zn3YxGd(3-x)(x=3,2,1.5,1,mole fraction) alloys,the microstructures,corrosion and compressive mec... Long period stacking ordered(LPSO) structure phases were prepared by conventional solidification method in Mg(94)Zn3YxGd(3-x)(x=3,2,1.5,1,mole fraction) alloys,the microstructures,corrosion and compressive mechanical properties of which were investigated,separately.The results reveal that the microstructures of the as-cast Mg(94)Zn3YxGd(3-x) alloys,with n(Zn)/n(Y+Gd)=1:1,consist of α(Mg) phase,Mg3Zn3RE2(W) phase,Mg(12)ZnRE(14H-LPSO) phase and a few bright cube-shaped Mg-Y-Gd phases.The formation and the distribution of LPSO-phase in the alloys can be influenced by the content of Gd.The volume fraction of 14H-LPSO phase increases first and then decreases with the increase of the Gd content.For the electrochemical impedance spectroscopy(EIS) measurement,a R(Q(R(QR))) model was used to fit the test results in 3.5%(mass fraction) NaCl solution at room temperature.The corrosion current densities of all samples are about 10-(-5) A/cm-2.When x(Gd)≤1%,Mg-Zn-Y-(Gd)alloy shows good corrosion resistance,which is better than that of the commercial AZ91 D magnesium alloy.The corrosion rate increases when the Gd content is higher than 1.5%.At room temperature,the compressive properties of Mg-Zn-Y-(Gd) alloys increase remarkably with the increase of the volume fraction of LPSO phase.In addition,the pinning effect of W-phase and dispersive cube-shaped Mg-Y-Gd phase is beneficial to improving the mechanical properties of as-cast Mg(94)Zn3YxGd(3-x) alloy in deformation process. 展开更多
关键词 as-cast magnesium alloy Mg-Zn-Y-(Gd) alloy 14H-LPSO phase corrosion property compressive properties
在线阅读 下载PDF
Microstructure and room temperature tensile property of as-cast Ti44Al6Nb1.0Cr2.0V alloy 被引量:1
6
作者 董书琳 陈瑞润 +3 位作者 郭景杰 丁宏升 苏彦庆 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1097-1105,共9页
The nominal Ti44Al6Nb1.0Cr2.0V alloy was newly designed and prepared by vacuum consumable melting technique with the ingot sizes of d225 mm×320 mm. The results show that the average lamella colony size is 780-18... The nominal Ti44Al6Nb1.0Cr2.0V alloy was newly designed and prepared by vacuum consumable melting technique with the ingot sizes of d225 mm×320 mm. The results show that the average lamella colony size is 780-1830 μm. This as-cast alloy has a modified near lamellar(M-NL) structure that is composed of mainly larger(α2+γ) lamella colonies and smaller(B2+equiaxed γ) blocky morphology. It exhibits the moderate tensile properties at room temperature, in which the Region(5) yields the ultimate tensile strength(UTS) about 499 MPa and the elongation about 0.53%. The obvious brittle fracture characteristics and trans-granular interlamellar fracture are the predominant modes. After room temperature tensile testing, there are some <101] and a few 1/2<112] superdislocations in the γ phase. The as-cast microcrack is the main factor to deteriorate the tensile property, which results in the premature fracture, poor ductility and few dislocations. The addition of Nb, Cr and V can decrease stacking fault energy(SFE) obviously, which is helpful to enhancing the ductility of the alloy. 展开更多
关键词 titanium aluminum alloy as-cast MICROSTRUCTURE tensile property MICROCRACK
在线阅读 下载PDF
Effects of lanthanum addition on microstructure and mechanical properties of as-cast pure copper 被引量:17
7
作者 陈岩 程明 +3 位作者 宋鸿武 张士宏 刘劲松 祝焱 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第11期1056-1063,共8页
As-cast Cu-La alloys with La contents in the range of 0–0.32 wt.% were fabricated by vacuum melting method. The effects of La on microstructure and mechanical properties of as-cast pure copper were investigated using... As-cast Cu-La alloys with La contents in the range of 0–0.32 wt.% were fabricated by vacuum melting method. The effects of La on microstructure and mechanical properties of as-cast pure copper were investigated using optical microscopy(OM), scanning electronic microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and tensile test. The results showed that La had obvious effects on the solidification microstructure and the grain refinement of as-cast pure copper. With the increase of La content, the ultimate tensile strength, the yield strength and the microhardness increased gradually, but the elongation increased first and then decreased while La content exceeded 0.089 wt.%. The improvement of mechanical properties was attributed to the effect of grain refinement strengthening, solid solution strengthening, second phase strengthening and purifying. However, excessive adding La would deteriorate the elongation owing to the excessive Cu6 La phases. 展开更多
关键词 as-cast pure copper La MICROSTRUCTURE mechanical property rare earths
原文传递
Metadynamic Recrystallization of the As-cast 42CrMo Steel after Normalizing and Tempering during Hot Compression 被引量:20
8
作者 QI Huiping LI Yongtang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期853-859,共7页
The existing researches of hot ring rolling process are mainly based on forged billet. Compared with the existing process, the new ring casting-rolling compound forming process has significant advantages in saving mat... The existing researches of hot ring rolling process are mainly based on forged billet. Compared with the existing process, the new ring casting-rolling compound forming process has significant advantages in saving materials and energy, reducing emission and reducing the production cost. The microstructure evolution of the casting materials during hot deformation is the basis of the research of the new process. However, the researches on the casting materials are rare. The metadynamic recrystallization of the as-cast 42CrMo steel after normalizing and tempering during the hot compression is investigated. The tests are performed on the Gleeble-1500 thermal-mechanical simulator. The influence rule of the deformation parameters on the metadynamic recrystallization is obtained by analyzing the experimental data. The kinetic model of the rnetadynamic recrystallization is deduced. The analysis results show that the metadynamic recrystallization fraction increases with the increase of the deformation temperature and the strain rate. The metallographic experiments are used to investigate the influence rule of the deformation parameters on the grain size of the metadynamic recrystallization. The experimental results show that the grain of the metadynamic recrystallization could be refined with the increase of the strain rate and the decrease of the deformation temperature during hot compression. The occurrence of the metadynamic recrystallization during the hot deformation is more difficult in as-cast 42CrMo steel than in forged 42CrMo steel. The research can provide the foundation for the further research of the hot deformation behaviors of the as-cast structure and theoretical support for the new ring casting-rolling compound process. 展开更多
关键词 metadynamic recrystallization as-cast 42CrMo steel deformation parameters grain size
在线阅读 下载PDF
Effect of Trace La Addition on the Microstructure and Mechanical Property of As-cast ADC12 Al-Alloy 被引量:26
9
作者 黄昕 闫洪 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期202-205,共4页
The effects of addition of La on the microstructure of as-cast ADC12 A1-Alloy were investigated by using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy disperse ... The effects of addition of La on the microstructure of as-cast ADC12 A1-Alloy were investigated by using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy disperse spectroscopy (EDS). The experimental results showed that the a-A1 and eutectic Si crystals were modified with the addition of 0.3 wt% La. The eutectic Si crystals showed a granular distribution. At the same time, the alloy possessed the best mechanical property. When more than 0.3 wt% La was added to ADC12 aluminum alloy, the microstructure of as-cast alloy was coarsening gradually with the increase of the content of La and the mechanical property decreased. The effect of rare earth La which was added in ADC 12 A1-Alloy for up to 0.9 wt% had been investigated in this study. The dendrites ofADC12 Al-alloy was refined obviously and the morphology of Si crystals showed a particle structure when the addition of La reached 0,3 wt%. Besides, the acicular La-rich intermetallics in the alloy deteriorated the mechanical property of alloy: To avoid this unwanted phase, the amount of added rare earth La must be less than 0.6 wt%. 展开更多
关键词 as-cast ADC12 A1-Alloy rare earth microstructure intermetallic compound mechanical property
原文传递
Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk 被引量:11
10
作者 Kai Chen Shu-yuan Rui +2 位作者 Fa Wang Jian-xin Dong Zhi-hao Yao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第7期889-900,共12页
To investigate the microstructure, segregation, and suitable homogenization process of as-cast GH4169D alloy, the microstructure, elements segregation, and precipitates of cast GH4169D ingots prepared by vacuum induct... To investigate the microstructure, segregation, and suitable homogenization process of as-cast GH4169D alloy, the microstructure, elements segregation, and precipitates of cast GH4169D ingots prepared by vacuum induction melting (VIM) and vacuum arc remelting (VAR) were observed by optical microscopy (OM), scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDS). According to the residual segregation model and simulation results of DICTRA thermodynamic software, the homogenization temperature and time range were set as 1120–1170°C and 5–20 h, respectively. The experimental results showed that microscopic dendrite and element segregation occurred in the interior of ingots and the main segregation elements were Nb and Ti. In addition, the precipitates were mainly distributed in interdendritic regions and were composed of NbC, Laves,γ′, and δ phases. The homogenization process suggested that the interdendritic detrimental precipitated Laves phase can be eliminated or redissolved after homogenization at 1150°C for 20 h, suggesting it was the most suitable homogenization treatment. Thermal compression test results showed that the GH4169D alloys after homogenization treatment had no cracks and dynamic recrystallization occurred, with recrystallization volume fraction increasing with temperature, indicating a good working plasticity at temperatures from 1050 to 1200°C. 展开更多
关键词 GH4169D SUPERALLOY as-cast MICROSTRUCTURE SEGREGATION HOMOGENIZATION thermal DEFORMATION
在线阅读 下载PDF
Cracking mechanism in as-cast GH4151 superalloy ingot with high γ'phase content 被引量:14
11
作者 Xin-xu LI Chong-lin JIA +2 位作者 Yong ZHANG Shao-min LÜ Zhou-hua JIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第10期2697-2708,共12页
The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed dur... The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed during the cooling process.And cold cracking is closely related to severe segregation,complex precipitates and uneven γ'phase distribution.During cooling process,cracks were generated around the precipitates due to their different linear shrinkage coefficients.The annealing treatment process controlling the residual stress,the size and morphology of γ'phase was proposed.The annealing treatment plays a role in reducing residual stress through decreasing the thermal gradient and controlling the size distribution of γ'phase to reduce the strain concentration around the precipitate phases. 展开更多
关键词 GH4151 alloy as-cast ingot cracking mechanism residual stress γ'phase
在线阅读 下载PDF
As-cast microstructure of Al-Zn-Mg-Cu-Zr alloy containing trace amount of Sc 被引量:9
12
作者 Yu Wang Bai-Qing Xiong +4 位作者 Zhi-Hui Li Shu-Hui Huang Kai Wen Xi-Wu Li Yong-An Zhang 《Rare Metals》 SCIE EI CAS CSCD 2019年第4期343-349,共7页
It has been reported that the element scandium (Sc) is the most effective modificator which can significantly refine the grain size,prohibit recrystallization process and increase the strength.Adding trace of Sc in 70... It has been reported that the element scandium (Sc) is the most effective modificator which can significantly refine the grain size,prohibit recrystallization process and increase the strength.Adding trace of Sc in 7000 series aluminum alloys is considered to be an effective way to modify its microstructure and promote mechanical properties.In order to study the effect of Sc element on ascast microstructure of Al-Zn-Mg-Cu-Zr alloy,ingots containing different amounts of Sc were prepared by ferrous-mold cast.Microstructures were characterized by means of differential scanning calorimeter (DSC),X-ray diffraction (XRD),optical microscope (OM) and scanning electrical microscope (SEM).The results indicate that when the Sc level exceeds a critical concentration,A13(Sc,Zr) primary phase would form in the melt and act as an efficient nucleant,resulting in very refined grain and an equiaxed grain structure.Sc element reduces the number of eutectic phases formed during solidification,coupled with an increase in the concentration of major alloying elements retained in the solute.This behavior suggests possible benefits in improving the integrated properties of terminal products. 展开更多
关键词 SCANDIUM Aluminum alloy as-cast Microstructure Nucleant
原文传递
Effect of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg-8Li-3Al-(1,2,3)Sn alloys 被引量:12
13
作者 Xiao-yang CHEN Yang ZHANG +2 位作者 Meng-qi CONG Ya-lin LU Xiao-ping LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第8期2079-2089,共11页
The effects of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg-8Li-3Al-(1,2,3)Sn(wt.%)alloys were investigated by X-ray diffractometry(XRD),optical microscopy(OM),scanning electron mi... The effects of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg-8Li-3Al-(1,2,3)Sn(wt.%)alloys were investigated by X-ray diffractometry(XRD),optical microscopy(OM),scanning electron microscopy(SEM)and tensile test.It is found that,as-cast Mg-8Li-3Al-(1,2,3)Sn alloys consist ofα-Mg+β-Li duplex matrix,MgLiAl2 and Li2Mg Sn phases.Increasing Sn content leads to grain refinement ofα-Mg dendrites and increase in content of Li2MgSn phase.During hot extrusion,complete dynamic recrystallization(DRX)takes place inβ-Li phase while incomplete DRX takes place inα-Mg phase.As Sn content is increased,the volume fraction of DRXedα-Mg grains is increased and the average grain size of DRXedα-Mg grains is decreased.Increasing Sn content is beneficial to strength but harmful to ductility for as-cast Mg-8Li-3Al-(1,2,3)Sn alloys.Tensile properties of Mg-8Li-3Al-(1,2,3)Sn alloys are improved significantly via hot extrusion and Mg-8Li-3Al-2Sn alloy exhibits the best tensile properties. 展开更多
关键词 Mg-Li-Al-Sn alloy as-cast state RECRYSTALLIZATION MICROSTRUCTURE tensile properties
在线阅读 下载PDF
Processing map of as-cast 7075 aluminum alloy for hot working 被引量:12
14
作者 Guo Lianggang Yang Shuang +1 位作者 Yang He Zhang Jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第6期1774-1783,共10页
The true stress-strain curves of as-cast 7075 aluminum alloy have been obtained by isothermal compression tests at temperatures of 300 500 ~C and strain rates of 0.01 10 s i. The plastic flow instability map is establ... The true stress-strain curves of as-cast 7075 aluminum alloy have been obtained by isothermal compression tests at temperatures of 300 500 ~C and strain rates of 0.01 10 s i. The plastic flow instability map is established based on Gegel B and Murthy instability criteria because the deformed compression samples suggest that the combination of the above two instability criteria has more comprehensive crack prediction ability. And the processing map based on Dynamic Mate- rial Model (DMM) of as-cast 7075 aluminum alloy has been developed through a superposition of the established instability map and power dissipation map. In terms of microstructure of the deformed samples and whether plastic flow is stable or not, the processing map can be divided into five areas: stable area with as-cast grain, stable area with homogeneous grain resulting from dynamic recovery, instability area with as-cast grain, instability area with the second phase and instability area with mixed grains. In consideration of microstructure characteristics in the above five areas of the processing map, the stable area with homogeneous grain resulting from dynamic recovery, namely the temperatures at 425465 ℃ and the strain rates at 0.01^-1 s^-1, is suggested to be suitable processing window for the as-cast 7075 aluminum alloy. 展开更多
关键词 as-cast 7075 aluminum alloy Hot compression test Hot working Processing map Processing window
原文传递
A novel unified model predicting flow stress and grain size evolutions during hot working of non-uniform as-cast 42CrMo billets 被引量:11
15
作者 Lianggang GUO Fengqi WANG +2 位作者 Pengliang ZHEN Xuechao LI Mei ZHAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期531-545,共15页
The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. Ho... The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. However, how to establish a unified model of a non-uniform as-cast billet depicting the flow stress and microstructure evolution behaviors during hot working is the key to microstructure prediction and parameter optimization of the CPFP. In this work, hot compression tests are performed using a non-uniform as-cast 42 CrMo billet at 1123–1423 K and 0.01–1sà1. The effect laws of the non-uniform state of the as-cast billet with different initial grain sizes on the flow stress and microstructure are revealed deeply. Based on experimental results, a unified model of flow stress and grain size evolutions is developed by the internal variable modeling method. Verified results show that the model can well describe the responses of the flow stress and microstructure to deformation conditions and initial grain sizes. To further evaluate its reliability, the unified model is applied to FE simulation of the cast preformed ring rolling process.The predictions of the rolling force and grain size indicate that it could well describe the flow stress and microstructure evolutions during the process. 展开更多
关键词 Cast preformed forming process Flow stress Grain size NON-UNIFORM as-cast 42CrMo BILLET Ring rolling Unified model
原文传递
Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys 被引量:16
16
作者 Hong-xiang Li Shi-kai Qin +3 位作者 Hng-zhong Ma Jian WanE Yun-jin Liu Ji-shan Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第7期800-809,共10页
The effects of Zn content on the microstxucture and the mechanical and corrosion properties of as-cast low-alloyed Mg-xZn~.2Ca alloys (x = 0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, ... The effects of Zn content on the microstxucture and the mechanical and corrosion properties of as-cast low-alloyed Mg-xZn~.2Ca alloys (x = 0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, respectively) axe investigated. The results show that the Zn content not only influences grain refinement but also induces different phase precipitation behaviors. The as-cast microstxucture of the 0.6Zn alloy is composed of ct-Mg, Mg2Ca, and Ca2Mg6Zn3 phases, whereas 2.0Zn and 2.5Zn alloys only contain ct-Mg and Ca2Mg6Zn3 phases, as revealed by X-ray diffraction (XRD) and txonsmission electron microscopy (TEM) analyses. Moreover, with in- creasing Zn content, both the ultimate tensile strength (UTS) and the elongation to fracture first increase and then decrease. Among the three investigated alloys, the largest UTS (178 MPa) and the highest elongation to fracture (6.5%) are obtained for the 2.0Zn alloy. In addition, the corrosion rate increases with increasing Zn content. This paper provides on updated investigation of the alloy composi- tion-microstxucture-property relationships of different Zn-containing Mg-Zn-Ca alloys. 展开更多
关键词 Mg-Zn-Ca alloy s as-cast micro stxucture mechanical properties corrosion properties
在线阅读 下载PDF
Effects of mischmetal addition on phase transformation and as-cast microstructure characteristics of M2 high-speed steel 被引量:9
17
作者 曲明贵 王振华 +3 位作者 李慧 吕知清 孙淑华 傅万堂 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第6期628-633,共6页
The influence of mischmetal (Ce-La) addition on phase transformation and as-cast microstructure characteristics of M2 high-speed steel (HSS) was investigated using Thermo-Calc software, differential scanning calor... The influence of mischmetal (Ce-La) addition on phase transformation and as-cast microstructure characteristics of M2 high-speed steel (HSS) was investigated using Thermo-Calc software, differential scanning calorimetry, X-ray diffractometry and scanning electron microscopy with energy dispersive spectrometry. The results showed that the measured phase transition points of M2 HSS were broadly consistent with the theoretical results. After mischmetal addition, the liquidus peak temperature, the peak temperature of the eutectic precipitation of M6C and MC were all increased, especially for the M6C which was affected significantly and increased about 31 °C. The contents of Mo and V in the eutectic carbide decreased and that of Fe increased, while in the matrix, the Mo, V and Cr contents all increased slightly. Furthermore, the microstructure of as-cast dendrite and ledeburite were refined, the total eutectic carbide content decreased and distributed into a discontinuous network, the lamellar spacing of M2C was reduced and the lamellae became thinner. 展开更多
关键词 M2 high-speed steel mischmetal phase transformation as-cast microstructure CARBIDE rare earths
原文传递
Microstructure evolution and deformation behavior of as-cast NiTi shape memory alloy under compression 被引量:10
18
作者 JIANG Shu-yong ZHANG Yan-qiu 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期90-96,共7页
The as-cast ingot of equiatomic nickel-titanium shape memory alloy (SMA) was prepared via vacuum consumable arc melting. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, energy dispersi... The as-cast ingot of equiatomic nickel-titanium shape memory alloy (SMA) was prepared via vacuum consumable arc melting. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, energy dispersive X-ray (EDX) measurement and microanalysis were adopted in order to understand the microstructure evolution and deformation behavior of the as-cast NiTi SMA under compression at various strain rates and temperatures. The microstructures of as-cast NiTi SMA composed of dendritic grains and equiaxed grains are inhomogeneous and show segregation. The as-cast NiTi SMA consists of B19′ martensite, B2 austenite and Ti2Ni phase simultaneously at room temperature. The as-cast NiTi SMA is sensitive to strain rate under compression at high temperature, at which NiTi SMA is characterized by dynamic recrystallization at strain rates of 0.1 and 0.01 s-1, but by dynamic recovery at strain rate of 0.001s-1. The strain rates have little influence on the true stress—strain curves as well as microstructure of NiTi SMA at room temperature and -100 °C. 展开更多
关键词 as-cast NiTi microstructure evolution deformation behavior dynamic recrystallization shape memory alloy
在线阅读 下载PDF
Research on microstructure in as-cast 7A55 aluminum alloy and its evolution during homogenization 被引量:10
19
作者 LV Xinyu GUO Erjun +1 位作者 LI Zhihui WANG Guojun 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期664-668,共5页
The microstructure of the as-cast 7A55 aluminum alloy and its evolution during homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrosco... The microstructure of the as-cast 7A55 aluminum alloy and its evolution during homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analysis. The results indicate that the microstructure of the as-cast 7A55 aluminum alloy mainly consists of the dendritic network of aluminum solid solution, Al/AIZnMgCu eutectic phases, and intermetaUic compounds MgZn2, Al2CuMg, Al7Cu2Fe, and Al23CuFe4. After homogenization at 470℃ for 48 h, Al/AlZnMgCu eutectic phases are dissolved into the matrix, and a small amount of high melting-point secondary phases were formed, which results in an increasing of the starting melting temperature of 7A55 aluminum alloy The high melting-point secondary phases were eliminated mostly when the homogenization time achieved to 72 h. Therefore, the reasonable homogenization heat treatment process for 7A55 aluminum alloy ingots was chosen as 470℃/72 h. 展开更多
关键词 7A55 aluminum alloy as-cast constituents HOMOGENIZATION
在线阅读 下载PDF
Influence of cerium treatment on inclusion modification and as-cast microstructure of high-strength low-alloy steel 被引量:8
20
作者 Ru-ming Geng Jing Li Cheng-bin Shi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2022年第10期1659-1668,共10页
The influence of cerium treatment on the inclusion evolution and as-cast microstructure of high-strength low-alloy steel was investigated.Properties including the inclusions characteristics,element distribution,and th... The influence of cerium treatment on the inclusion evolution and as-cast microstructure of high-strength low-alloy steel was investigated.Properties including the inclusions characteristics,element distribution,and the in situ solidification were analyzed by scanning electron microscopy,energy-dispersive spectroscopy,and high-temperature confocal laser scanning microscopy,respectively.The results indicated that,after the addition of Ce,the Al_(2)O_(3) inclusions evolved to form Ce_(2)O_(2)S and CeAlO_(3) inclusions,which exhibited a decrease in size alongside corresponding increase in their number density.The equiaxed grain ratio exhibited by the as-cast microstructure increased significantly upon the addition of Ce,while a reduction in the segregation and a corresponding increase in the homogeneity of the carbon distribution within the as-cast microstructure were also achieved.The results of the in situ observation of the solidification suggested that the addition of Ce significantly reduced the solidification temperature range,thus reducing the carbon segregation.The nucleation effect imparted by Al_(2)O_(3),Ce_(2)O_(2)S,and CeAlO_(3) on theδ-Fe formation was discussed in the context of the disregistry theory,which revealed that the formation of a large number of fine Ce_(2)O_(2)S inclusions promotedδ-Fe formation via heterogeneous nucleation. 展开更多
关键词 Ce treatment Non-metallic inclusion as-cast microstructure In situ observation Disregistry theory
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部