期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The Design and Implementation of the Data Buffer Unit in an Artificial intelligence Computer ITM-1
1
作者 张晨曦 《High Technology Letters》 EI CAS 1996年第2期55-58,共4页
This paper describes the function,structure and working status of the data buffer unitDBU,one of the most important functional units on ITM-1.It also discusses DBU’s supportto the multiprocessor system and Prolog lan... This paper describes the function,structure and working status of the data buffer unitDBU,one of the most important functional units on ITM-1.It also discusses DBU’s supportto the multiprocessor system and Prolog language. 展开更多
关键词 DBU The Design and Implementation of the data Buffer Unit in an artificial intelligence Computer ITM-1 Prolog CPU ITM
在线阅读 下载PDF
International Papers Contribution on Artificial Intelligence Promotes the Application and Development of Big Data in the Petroleum Industry
2
作者 《Petroleum Exploration and Development》 2020年第2期224-224,共1页
Artificial intelligence is a new technological science that researches and develops theories,methods,technologies and application systems for simulating,extending and expanding human intelligence.It simulates certain ... Artificial intelligence is a new technological science that researches and develops theories,methods,technologies and application systems for simulating,extending and expanding human intelligence.It simulates certain human thought processes and intelligent behaviors(such as learning,reasoning,thinking,planning,etc.),and produces a new type of intelligent machine that can respond in a similar way to human intelligence.In the past 30 years,it has achieved rapid development in various industries and related disciplines such as manufacturing,medical care,finance,and transportation. 展开更多
关键词 International Papers Contribution on artificial Intelligence Promotes the Application and Development of Big data in the Petroleum Industry
在线阅读 下载PDF
Data mining-based study on sub-mentally healthy state among residents in eight provinces and cities in China 被引量:3
3
作者 Hongmei Ni Xuming Yang +3 位作者 Chengquan Fang Yingying Guo Mingyue Xu Yumin He 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2014年第4期511-517,共7页
OBJECTIVE: To apply data mining methods to research on the state of sub-mental health among residents in eight provinces and cities in China and to mine latent knowledge about many conditions through data mining and a... OBJECTIVE: To apply data mining methods to research on the state of sub-mental health among residents in eight provinces and cities in China and to mine latent knowledge about many conditions through data mining and analysis of data on 3970 sub-mentally healthy individuals selected from 13385 relevant question naires.METHODS: The strategic tree algorithm was used to identify the main mani festations of the state of sub-mental health. The backpropogation artificial neural network was used to analyze the main mani festations of sub-healthy mental states of three different degrees. A sub-mental health evaluation model was then established to achieve predictive evaluationresults.RESULTS: Using classifications from the Scale of Chinese Sub-healthy State, the main manifestations of sub-mental health selected using the strate gictree were F1101(Do you lack peace of mind?),F1102(Are you easily nervous when something comes up?), and F1002(Do you often sigh?). The relative intensity of manifestations of sub-mental health was highest for F1101, followed by F1102,and then F1002. Through study of the neural network, better differentiation could be made between moderate and severe and between mild and severe states of sub-mental health. The differentiation between mild and moderate sub-mental health states was less apparent. Additionally, the sub-mental health state evaluation model, which could be used to predict states of sub-mental health of different individuals, was established using F1101, F1102, F1002, and the mental self-assessment totals core.CONCLUSION: The main manifestations of the state of sub-mental health can be discovered using data mining methods to research and analyze the latent laws and knowledge hidden in research evidence on the state of sub-mental health. The state of sub-mental health of different individuals can be rapidly predicted using the model established here.This can provide a basis for assessment and intervention for sub-mental health. It can also replace the relatively outdated approaches to research on sub-health in the technical era of information and digitization by combining the study of states of sub-mental health with information techniques and by further quantifying the relevant information. 展开更多
关键词 Questionnaires Mental health data mining Strategictree artificial neural network
原文传递
基于标签权重评分的推荐模型及算法研究 被引量:37
4
作者 孔欣欣 苏本昌 +2 位作者 王宏志 高宏 李建中 《计算机学报》 EI CSCD 北大核心 2017年第6期1440-1452,共13页
推荐系统已经被越来越频繁地应用到电子商务网站与一些社交网站,在提高用户满意度的同时也带来了巨大的商业利益.然而,当前的推荐算法由于原始数据的不完整性以及算法本身处理数据的特殊性,导致推荐效果不理想.例如,某些推荐系统会产生... 推荐系统已经被越来越频繁地应用到电子商务网站与一些社交网站,在提高用户满意度的同时也带来了巨大的商业利益.然而,当前的推荐算法由于原始数据的不完整性以及算法本身处理数据的特殊性,导致推荐效果不理想.例如,某些推荐系统会产生冷启动、复杂兴趣推荐困难、解释性差等问题.为此,该文提出一种基于标签权重评分的推荐系统模型(Label-Weight Rating based Recommendation,LWR),旨在使用一种较为简洁的方式——标签权重评分来获取用户最准确的评价和需求,并通过改进当前的一些推荐算法来处理标签权重评分数据,从而生成对用户的推荐,最后以标签权重评分的形式向用户展示推荐结果并作出合理的解释.扩展实验中,通过电影推荐实验,证明了该文技术的有效性和可行性. 展开更多
关键词 推荐系统 标签 标签权重评分 数据挖掘 人工智能
在线阅读 下载PDF
基于非时序观察数据的因果关系发现综述 被引量:44
5
作者 蔡瑞初 陈薇 +1 位作者 张坤 郝志峰 《计算机学报》 EI CSCD 北大核心 2017年第6期1470-1490,共21页
探索和发现事物间的因果关系是数据科学的一个核心问题,其中蕴含着丰富的科学发现机会和巨大的商业价值.基于非时序观察数据的因果关系发现方法能够从被动观察获得的数据中发现变量之间的因果关系,因而在各领域有广泛应用.这一类方法在... 探索和发现事物间的因果关系是数据科学的一个核心问题,其中蕴含着丰富的科学发现机会和巨大的商业价值.基于非时序观察数据的因果关系发现方法能够从被动观察获得的数据中发现变量之间的因果关系,因而在各领域有广泛应用.这一类方法在过去三十年取得很大进展,已经成为因果关系发现的重要途径.文中从因果关系方向推断、高维数据上的误发现率控制和不完全观察数据上的隐变量检测这三个研究热点出发,对现有的因果关系模型与假设、基于约束的方法、基于因果函数模型的方法和混合型方法这三大类方法,验证与测评涉及的数据集及工具等方面进行了详尽的介绍与分析.基于约束的方法主要包括因果骨架学习和因果方向推断两个阶段:首先基于因果马尔可夫假设,采用条件独立性检验学习变量之间的因果骨架,然后基于奥卡姆剃刀准则利用V-结构确定因果方向,典型的算法有Peter-Clark算法、Inductive Causation等,这类方法的主要不足是存在部分无法判断的因果关系方向,即存在Markov等价类难题.基于因果函数模型的方法则基于数据的因果产生机制假设,在构建变量之间的因果函数模型的基础之上,基于噪声的非高斯性、原因变量与噪声的独立性、原因变量分布与因果函数梯度的独立性等因果假设推断变量之间的因果关系方向,典型的算法有针对线性非高斯无环数据的Linear NonGaussian Acyclic Model算法、针对后非线性数据的Post-NonLinear算法、适用于非线性或离散数据的Additive Noise Model等,这类方法的主要不足是需要较为严格的数据因果机制假设,且Additive Noise Model等方法主要适用于低维数据场景.混合型方法则希望充分发挥基于约束的方法和基于因果函数类方法的优势,分别采用基于约束的方法进行全局结构学习和基于因果函数模型进行局部结构学习和方向推断,典型的算法有SADA、MCDSL等,理论分析较为不足是这类方法目前遇到的主要困难.最后,文中还基于研究现状分析讨论了因果方向推断、高维数据上的误发现率控制、隐变量发现、与机器学习的关系等未来可能的研究方向. 展开更多
关键词 因果关系 因果关系发现 观察数据 结构学习 加性噪声模型 人工智能 机器学习
在线阅读 下载PDF
Review of big-data and AI application in typhoon-related disaster risk early warning in Typhoon Committee region
6
作者 Jinping Liu Jeonghye Lee Ruide Zhou 《Tropical Cyclone Research and Review》 2023年第4期341-353,共13页
ESCAP/WMO Typhoon Committee Members are directly or indirectly affected by typhoons every year.Members have accumulated rich experiences dealing with typhoons'negative impact and developed the technologies and mea... ESCAP/WMO Typhoon Committee Members are directly or indirectly affected by typhoons every year.Members have accumulated rich experiences dealing with typhoons'negative impact and developed the technologies and measures on typhoon-related disaster risk forecasting and early warning in various ways to reduce the damage caused by typhoon.However,it is still facing many difficulties and challenges to accurately forecast the occurrence of typhoons and warning the potential impacts in an early stage due to the continuously changing weather conditions.With the development of information technology(IT)and computing science,and increasing accumulated hydro-meteorological data in recent decades,scientists,researchers and operationers keep trying to improve forecasting models based on the application of big data and artificial intelligent(AI)technology to promote the capacity of typhoon-related disaster risk forecasting and early warning.This paper reviewed the current status of application of big data and AI technology in the aspect of typhoon-related disaster risk forecasting and early warning,and discussed the challenges and limitations that must be addressed to effectively harness the power of big data and AI technology application in typhoon-related disaster risk reduction in the future. 展开更多
关键词 Typhoon-related disaster risk Forecasting and early warning Big data and artificial intelligence
原文传递
Stress testing electrical grids:Generative Adversarial Networks for load scenarion
7
作者 Matteo Rizzato Nicolas Morizet +1 位作者 William Maréchal Christophe Geissler 《Energy and AI》 2022年第3期182-192,共11页
As the energy transition is upon us,the replacement of combustion engines by electrical ones will imply a greater stress on the electrical grid of different countries.Therefore,it is of paramount importance to simulat... As the energy transition is upon us,the replacement of combustion engines by electrical ones will imply a greater stress on the electrical grid of different countries.Therefore,it is of paramount importance to simulate a great number of hypothetical multi-variant scenarios to correctly plan the roll-out of new grids.In this paper,we deploy Generative Adversarial Networks(GANs)to swiftly reproduce the non-Gaussian and multimodal distribution of real energy-related samples,making GANs a valuable tool for data generation in the field.In particular,we propose an original dataset deriving from the aggregation of two European providers including hourly electric inland generation from several European countries.This dataset also comes along with the corresponding season,day of the week,hour of the day and macro-economic variables aiming at unequivocally describing the country’s energetic profile.Finally,we evaluate the performance of our model via dedicated metrics capable of grasping the non-Gaussian nature of the data and compare it with the state-of-the-art model for tabular data generation. 展开更多
关键词 Generative Adversarial Networks artificial data Electrical grid SIMULATION Load profiles
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部