An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the...An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the Spatial Transformation of Sound Fields (STSF), the complex pressure on two parallel planes near by the material surface or the reflection surface must be measured. By the acoustic intensity measurement, the phases of complex pressure on two parallel planes are given. The results of the numerical simulations are shown that the error due to the finite size of the measurement area, and it may be reduced by using a dipole sound source.展开更多
This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element i...This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element is designed by loading the rectangular microstrip element with L-shaped conducting patch at its two ends. Based on the spectral-domain method, the frequency response including angle effect and polarization effect of the frequency selective surface (FSS) structure are analysed and the plots of the frequency versus transmission coefficient are obtained. As a result of the numerical analysis, it is shown that if the source polarization is changed, polarization-independence of previous FSS design can be achieved only for normal incidence, which limits most FSS applications. But in our proposed structure, the better polarization-independency for arbitrary incident angle can be achieved. It is observed that the simulated result comes very close to the experimental result.展开更多
Split Trailing Suction Hopper Dredgers (TSHD) are special type of working ships, whose hulls open to discharge cargo to certain unloading positions while being at sea. Although they have variable hull geometry, their ...Split Trailing Suction Hopper Dredgers (TSHD) are special type of working ships, whose hulls open to discharge cargo to certain unloading positions while being at sea. Although they have variable hull geometry, their hydrostatic and stability characteristics are usually calculated for unchanged initial hull geometry loading conditions only, and such calculations are supported by classification society stability regulations for that ship type. Nevertheless, in this study, we show that hydrostatic particulars for intermediate loading conditions of variable ship geometry can be calculated by using analytical solutions of basic hydrostatic integrals for arbitrary list angles, obtained for polynomial radial basis function description of ship geometry. The calculations will be performed for symmetric hopper opening during cargo discharge procedure, thus covering all Split TSHD regular unloading conditions, without examination of ship hull opening failure modes. Thus, all ship hydrostatic properties will be pre-calculated analytically and prepared for further stability calculations, as opposed to the usual numerical calculations for initial geometry and even keel only, as currently used in naval architecture design.展开更多
文摘An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the Spatial Transformation of Sound Fields (STSF), the complex pressure on two parallel planes near by the material surface or the reflection surface must be measured. By the acoustic intensity measurement, the phases of complex pressure on two parallel planes are given. The results of the numerical simulations are shown that the error due to the finite size of the measurement area, and it may be reduced by using a dipole sound source.
基金supported by the National Defense Innovation Foundation of Chinese Academy of Sciences (Grant No CXJJ-149)
文摘This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element is designed by loading the rectangular microstrip element with L-shaped conducting patch at its two ends. Based on the spectral-domain method, the frequency response including angle effect and polarization effect of the frequency selective surface (FSS) structure are analysed and the plots of the frequency versus transmission coefficient are obtained. As a result of the numerical analysis, it is shown that if the source polarization is changed, polarization-independence of previous FSS design can be achieved only for normal incidence, which limits most FSS applications. But in our proposed structure, the better polarization-independency for arbitrary incident angle can be achieved. It is observed that the simulated result comes very close to the experimental result.
文摘Split Trailing Suction Hopper Dredgers (TSHD) are special type of working ships, whose hulls open to discharge cargo to certain unloading positions while being at sea. Although they have variable hull geometry, their hydrostatic and stability characteristics are usually calculated for unchanged initial hull geometry loading conditions only, and such calculations are supported by classification society stability regulations for that ship type. Nevertheless, in this study, we show that hydrostatic particulars for intermediate loading conditions of variable ship geometry can be calculated by using analytical solutions of basic hydrostatic integrals for arbitrary list angles, obtained for polynomial radial basis function description of ship geometry. The calculations will be performed for symmetric hopper opening during cargo discharge procedure, thus covering all Split TSHD regular unloading conditions, without examination of ship hull opening failure modes. Thus, all ship hydrostatic properties will be pre-calculated analytically and prepared for further stability calculations, as opposed to the usual numerical calculations for initial geometry and even keel only, as currently used in naval architecture design.