期刊文献+
共找到133篇文章
< 1 2 7 >
每页显示 20 50 100
RESTRICTED NONLINEAR APPROXIMATION AND SINGULAR SOLUTIONS OF BOUNDARY INTEGRAL EQUATIONS 被引量:1
1
作者 Reinhard Hochmuth (Freie Universitat Berlin, Germany) 《Approximation Theory and Its Applications》 2002年第1期1-25,共25页
This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterization... This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results. 展开更多
关键词 In RESTRICTED NONLINEAR approximation AND SINGULAR solutions OF BOUNDARY INTEGRAL EQUATIONS
在线阅读 下载PDF
Evolutionary Safe Padé Approximation Scheme for Dynamical Study of Nonlinear Cervical Human Papilloma Virus Infection Model
2
作者 Javaid Ali Armando Ciancio +4 位作者 Kashif Ali Khan Nauman Raza Haci Mehmet Baskonus Muhammad Luqman Zafar-Ullah Khan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2275-2296,共22页
This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact so... This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants. 展开更多
关键词 Nonlinear cervical cancer epidemic non-singular Padéapproximants approximate solutions computational biology
在线阅读 下载PDF
Approximate analytical solutions for threedimensional ascent trajectory of a solid-fuel launch vehicle with time-varying mass flow rate
3
作者 Qi YU Wanchun CHEN Wenbin YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期275-293,共19页
In the scenario that a solid-fuel launch vehicle maneuvers in outer space at high angles of attack and sideslip for energy management,Approximate Analytical Solutions(AAS)for the threedimensional(3D)ascent flight stat... In the scenario that a solid-fuel launch vehicle maneuvers in outer space at high angles of attack and sideslip for energy management,Approximate Analytical Solutions(AAS)for the threedimensional(3D)ascent flight states are derived,which are the only solutions capable of considering time-varying Mass Flow Rate(MFR)at present.The uneven MFR makes the thrust vary nonlinearly and thus increases the difficulty of the problem greatly.The AAS are derived based on a 3D Generalized Ascent Dynamics Model(GADM)with a normalized mass as the independent variable.To simplify some highly nonlinear terms in the GADM,several approximate functions are introduced carefully,while the errors of the approximations relative to the original terms are regarded as minor perturbations.Notably,a finite series with positive and negative exponents,called Exponent-Symmetry Series(ESS),is proposed for function approximation to decrease the highest exponent in the AAS so as to reduce computer round-off errors.To calculate the ESS coefficients,a method of seeking the Optimal Interpolation Points(OIP)is proposed using the leastsquares-approximation theory.Due to the artful design of the approximations,the GADM can be decomposed into two analytically solvable subsystems by a perturbation method,and thus the AAS are obtained successfully.Finally,to help implement the AAS,two indirect methods for measuring the remaining mass and predicting the burnout time in flight are put forward using information from accelerometers.Simulation results verify the superiority of the AAS under the condition of time-varying MFR. 展开更多
关键词 Approximate analytical solutions 3D ascent trajectory Solid-fuel launch vehicle Uneven thrust Energy management
原文传递
Global Piecewise Analysis of HIV Model with Bi-Infectious Categories under Ordinary Derivative and Non-Singular Operator with Neural Network Approach
4
作者 Ghaliah Alhamzi Badr Saad TAlkahtani +1 位作者 Ravi Shanker Dubey Mati ur Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期609-633,共25页
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i... This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately. 展开更多
关键词 HIV infection model qualitative scheme approximate solution piecewise global operator neural network
在线阅读 下载PDF
Approximate solutions of the Alekseevskii–Tate model of long-rod penetration 被引量:6
5
作者 W.J.Jiao X.W.Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期334-348,共15页
The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod(tail) velocity, pe... The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod(tail) velocity, penetration velocity, rod length, and penetration depth were obtained implicitly as a function of time and solved numerically By employing a linear approximation to the logarithmic relative rod length, we obtain two sets of explicit approximate algebraic solutions based on the implicit theoretica solution deduced from primitive equations. It is very convenient in the theoretical prediction of the Alekseevskii–Tate model to apply these simple algebraic solutions. In particular, approximate solution 1 shows good agreement with the theoretical(exact) solution, and the first-order perturbation solution obtained by Walters et al.(Int. J. Impac Eng. 33:837–846, 2006) can be deemed as a special form of approximate solution 1 in high-speed penetration. Meanwhile, with constant tail velocity and penetration velocity approximate solution 2 has very simple expressions, which is applicable for the qualitative analysis of long-rod penetration. Differences among these two approximate solutions and the theoretical(exact) solution and their respective scopes of application have been discussed, and the inferences with clear physical basis have been drawn. In addition, these two solutions and the first-order perturbation solution are applied to two cases with different initial impact velocity and different penetrator/target combinations to compare with the theoretical(exact) solution. Approximate solution 1 is much closer to the theoretical solution of the Alekseevskii–Tate model than the first-order perturbation solution in both cases, whilst approximate solution 2 brings us a more intuitive understanding of quasi-steady-state penetration. 展开更多
关键词 Long-rod penetration Alekseevskii–Tate model Theoretical solution Approximate solution Perturbation solution
在线阅读 下载PDF
The Existence and Uniqueness of Solutions to Systems of Second-order Ordinary Differential Equations Boundary Value Problem in Absract Space 被引量:2
6
作者 武力兵 孙涛 何希勤 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第4期573-577,共5页
In this paper, it is discussed by using cone and upper and lower solutions mono- tone iterative theory of mixed monotone operator that the bounary value problem is more generalized style to system of equations in the ... In this paper, it is discussed by using cone and upper and lower solutions mono- tone iterative theory of mixed monotone operator that the bounary value problem is more generalized style to system of equations in the form of -u = f(t, u, v) -v = g(t, u, v) u(0) = u(1) = 0 v(0) = v(1) = 0 in abstract space. Moreover, it is obtained unique solutions for system of equations and error estimations between approximation iteration sequence and exact solution under more simpler conditions. Therefore, some new results which extend and improve the related known works in the literatures are obtained. 展开更多
关键词 systems of equations bounary value problem CONE approximation solution
在线阅读 下载PDF
Classification and Approximate Solutions to Perturbed Nonlinear Diffusion-Convection Equations 被引量:2
7
作者 WANG Yong ZHANG Shun-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第1期17-21,共5页
This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admi... This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate invariant solutions to the resulting equations can also be obtained. 展开更多
关键词 perturbed nonlinear diffusion-convection equation approximate generalized conditional symme-try approximate invariant solution
在线阅读 下载PDF
STRONG COMPACTNESS OF APPROXIMATE SOLUTIONS TO DEGENERATE ELLIPTIC-HYPERBOLIC EQUATIONS WITH DISCONTINUOUS FLUX FUNCTION 被引量:1
8
作者 Helge Holden Kenneth H. Karlsen +1 位作者 Darko Mitrovic Evgueni Yu. Panov 《Acta Mathematica Scientia》 SCIE CSCD 2009年第6期1573-1612,共40页
Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux ... Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measurevalued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes. 展开更多
关键词 degenerate hyperbolic-elliptic equation degenerate convection-diffusion equation conservation law discontinuous flux approximate solutions COMPACTNESS
在线阅读 下载PDF
ONE LINEAR ANALYTIC APPROXIMATION FOR STOCHASTIC INTEGRODIFFERENTIAL EQUATIONS 被引量:1
9
作者 Svetlana Jankovic Dejan Ilic 《Acta Mathematica Scientia》 SCIE CSCD 2010年第4期1073-1085,共13页
This article concerns the construction of approximate solutions for a general stochastic integrodifferential equation which is not explicitly solvable and whose coeffcients functionally depend on Lebesgue integrals an... This article concerns the construction of approximate solutions for a general stochastic integrodifferential equation which is not explicitly solvable and whose coeffcients functionally depend on Lebesgue integrals and stochastic integrals with respect to martingales. The approximate equations are linear ordinary stochastic differential equations, the solutions of which are defined on sub-intervals of an arbitrary partition of the time interval and connected at successive division points. The closeness of the initial and approximate solutions is measured in the L^p-th norm, uniformly on the time interval. The convergence with probability one is also given. 展开更多
关键词 Stochastic integrodifferential equation linear approximation approximate solution L^p-convergence convergence with probability one
在线阅读 下载PDF
Classification and Approximate Solutions to a Class of Perturbed Nonlinear Wave Equations 被引量:1
10
作者 ZHANG Zhi-Yong CHEN Yu-Fu YONG Xue-Lin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第11期769-772,共4页
A complete approximate symmetry classification of a class of perturbed nonlinear wave equations isperformed using the method originated from Fushchich and Shtelen.Moreover,large classes of approximate invariantsolutio... A complete approximate symmetry classification of a class of perturbed nonlinear wave equations isperformed using the method originated from Fushchich and Shtelen.Moreover,large classes of approximate invariantsolutions of the equations based on the Lie group method are constructed. 展开更多
关键词 approximate symmetry Lie reduction approximate solution
在线阅读 下载PDF
Approximate Analytical Solutions for Scattering States of D-dimensional Hulthen Potentials 被引量:1
11
作者 CHEN Chang-Yuan SUN Dong-Sheng LIU Cheng-Lin LU Fa-Lin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第3期399-404,共6页
Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Schr6dinger equation of D-dimensional Hulthen potential is transformed to a hypergeometric d... Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Schr6dinger equation of D-dimensional Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of scattering states are attained. The normalized wave functions expressed in terms of hypergeometrie functions of scattering states on the "k/2π scale" and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solutions is discussed. 展开更多
关键词 D-dimensional Hulthen potential Schrodinger equation scattering states approximate analytical solutions
在线阅读 下载PDF
Approximate Relativistic Solutions for One-Dimensional Cylindrical Coaxial Diode 被引量:1
12
作者 曾正中 刘国治 邵浩 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第1期1093-1100,共8页
Two approximate analytical relativistic solutions for one-dimensional, space-charge- limited cylindrical coaxial diode are derived and utilized to compose best-fitting approximate solutions. Comparison of the best-fit... Two approximate analytical relativistic solutions for one-dimensional, space-charge- limited cylindrical coaxial diode are derived and utilized to compose best-fitting approximate solutions. Comparison of the best-fitting solutions with the numerical one demonstrates an error of about 11% for cathode-inside arrangement and 12% in the cathode-outside case for ratios of larger to smaller electrode radius from 1.2 to 10 and a voltage above 0.5 MV up to 5 MV. With these solutions the diode lengths for critical self-magnetic bending and for the condition under which the parapotential model validates are calculated to be longer than 1 cm up to more than 100 cm depending on voltage, radial dimensions and electrode arrangement. The influence of ion flow from the anode on the relativistic electron-only solution is numerically computed, indicating an enhancement factor of total diode current of 1.85 to 4.19 related to voltage, radial dimension and electrode arrangement. 展开更多
关键词 Approximate Relativistic solutions for One-Dimensional Cylindrical Coaxial Diode length MV
在线阅读 下载PDF
Similarity Solutions of Marangoni Convection Boundary Layer Flow with Gravity and External Pressure
13
作者 张艳 郑连存 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第4期365-369,共5页
This study is focused on a steady dissipative layer, which is generated by Marangoni convection flow over the surface resulted from an imposed temperature gradient, coupled with buoyancy effects due to gravity and ext... This study is focused on a steady dissipative layer, which is generated by Marangoni convection flow over the surface resulted from an imposed temperature gradient, coupled with buoyancy effects due to gravity and external pressure. A model is proposed with Marangoni condition in the boundary conditions at the interface. The similarity equations are determined and approximate analytical solutions are obtained by an efficient transformation, asymptotic expansion and Pade approximant technique. For the cases that buoyancy force is favorable or unfavor-able to Marangoni flow, the features of flow and temperature fields are investigated in terms of Marangoni mixed convection parameter and Prantl number. 展开更多
关键词 Marangoni convection similarity equations asymptotic expansion Pad6 approximant approximate solution
在线阅读 下载PDF
Existence of Approximate Solutions to Nonlinear Lorenz System under Caputo-Fabrizio Derivative
14
作者 Khursheed J.Ansari Mustafa Inc +1 位作者 K.H.Mahmoud Eiman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1669-1684,共16页
In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The requ... In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The required results about the existence and uniqueness of a solution are derived via the fixed point approach due to Banach and Krassnoselskii.Also,we enriched our work by establishing a stable result based on the Ulam-Hyers(U-H)concept.Also,the approximate solution is computed by using a hybrid method due to the Laplace transform and the Adomian decomposition method.We computed a few terms of the required solution through the mentioned method and presented some graphical presentation of the considered problem corresponding to various fractional orders.The results of the existence and uniqueness tests for the Lorenz system under CFFD have not been studied earlier.Also,the suggested method results for the proposed system under the mentioned derivative are new.Furthermore,the adopted technique has some useful features,such as the lack of prior discrimination required by wavelet methods.our proposed method does not depend on auxiliary parameters like the homotopy method,which controls the method.Our proposed method is rapidly convergent and,in most cases,it has been used as a powerful technique to compute approximate solutions for various nonlinear problems. 展开更多
关键词 Lorenz system CFFD fixed point approach approximate solution
在线阅读 下载PDF
Approximate Solutions of Nonlinear Fractional Kolmogorov-Petrovskii-Piskunov Equations Using an Enhanced Algorithm of the Generalized Two-Dimensional Differential Transform Method
15
作者 宋丽哪 王维国 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第8期182-188,共7页
By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Ko... By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus. 展开更多
关键词 differential transform method fractional differential equation approximate solution
原文传递
Approximate Generalized Conditional Symmetries and Solutions for Nonlinear Filtration Equation with a Small Parameter
16
作者 LI Hong LI Jina +1 位作者 WANG Yanyan ZUO Suli 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第6期461-464,共4页
The approximate generalized conditional symmetries of nonlinear filtration equation with a small parameter are studied. The initial-value problem of the equation can be transformed to perturbed Cauchy problem of pertu... The approximate generalized conditional symmetries of nonlinear filtration equation with a small parameter are studied. The initial-value problem of the equation can be transformed to perturbed Cauchy problem of perturbed first-order ordinary dif- ferential equations systems and approximate solutions are obtained by using these symmetries. 展开更多
关键词 nonlinear filtration equation approximate solution initial-value problem
原文传递
Approximate solutions of nonlinear PDEs by the invariant expansion
17
作者 吴江龙 楼森岳 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期31-36,共6页
It is difficult to obtain exact solutions of the nonlinear partial differential equations (PDEs) due to their complexity and nonlinearity, especially for non-integrable systems. In this paper, some reasonable approx... It is difficult to obtain exact solutions of the nonlinear partial differential equations (PDEs) due to their complexity and nonlinearity, especially for non-integrable systems. In this paper, some reasonable approximations of real physics are considered, and the invariant expansion is proposed to solve real nonlinear systems. A simple invariant expansion with quite a universal pseudopotential is used for some nonlinear PDEs such as the Korteweg-de Vries (KdV) equation with a fifth-order dispersion term, the perturbed fourth-order KdV equation, the KdV-Burgers equation, and a Boussinesq-type equation. 展开更多
关键词 approximate solution invariant expansion Mobious transformation invariance
原文传递
Approximate Solutions of Perturbed Nonlinear Schroedinger Equations
18
作者 CHENG Xue-Ping YE Li-Jun LIN Ji 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第2X期227-231,共5页
By applying Lou's direct perturbation method to perturbed nonlinear Schroedinger equation and the critical nonlinear SchrSdinger equation with a small dispersion, their approximate analytical solutions including the ... By applying Lou's direct perturbation method to perturbed nonlinear Schroedinger equation and the critical nonlinear SchrSdinger equation with a small dispersion, their approximate analytical solutions including the zero-order and the first-order solutions are obtained. Based on these approximate solutions, the analytical forms of parameters of solitons are expressed and the effects of perturbations on solitons are briefly analyzed at the same time. In addition, the perturbed nonlinear Schroedinger equations is directly simulated by split-step Fourier method to check the validity of the direct perturbation method. It turns out that the analytical results given by the direct perturbation method are well supported by numerical calculations. 展开更多
关键词 direct perturbation method perturbed nonlinear Schroedinger equation approximate solution
在线阅读 下载PDF
Local Galerkin Method for the Approximate Solutions to General FPK Equations
19
作者 Er Guokang (Civil Engineering Institute, Southwest Jiaotong University Faculty of Science and Technology, University of Macao) 《Advances in Manufacturing》 SCIE CAS 1999年第1期25-29,共5页
In this paper, the method proposed recently by the author for the solution of probability density function (PDF) of nonlinear stochastic systems is presented in detail and extended for more general problems of stochas... In this paper, the method proposed recently by the author for the solution of probability density function (PDF) of nonlinear stochastic systems is presented in detail and extended for more general problems of stochastic differential equations (SDE), therefore the Fokker Planck Kolmogorov (FPK) equation is expressed in general form with no limitation on the degree of nonlinearity of the SDE, the type of δ correlated excitations, the existence of multiplicative excitations, and the dimension of SDE or FPK equation. Examples are given and numerical results are provided for comparing with known exact solution to show the effectiveness of the method. 展开更多
关键词 stochastic differential equations probability density function FPK equation approximate PDF solution local Galerkin method
在线阅读 下载PDF
Approximate analytic solutions for a generalized Hirota—Satsuma coupled KdV equation and a coupled mKdV equation
20
作者 赵国忠 蔚喜军 +2 位作者 徐云 朱江 吴迪 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期46-54,共9页
This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV)... This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions. 展开更多
关键词 approximate analytic solutions generalized Hirota-Satsuma coupled KdV equation coupled mKdV equation variational iteration method
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部