期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
RESTRICTED NONLINEAR APPROXIMATION AND SINGULAR SOLUTIONS OF BOUNDARY INTEGRAL EQUATIONS 被引量:1
1
作者 Reinhard Hochmuth (Freie Universitat Berlin, Germany) 《Approximation Theory and Its Applications》 2002年第1期1-25,共25页
This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterization... This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results. 展开更多
关键词 In RESTRICTED NONLINEAR APPROXIMATION AND SINGULAR solutionS OF BOUNDARY INTEGRAL equationS
在线阅读 下载PDF
Solitary wave solutions to higher-order traffic flow model with large diffusion
2
作者 菅肖霞 张鹏 +2 位作者 S.C.WONG 乔殿梁 崔岐柱 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第2期167-176,共10页
This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the appr... This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution. 展开更多
关键词 higher-order traffic flow model viscosity coefficient approximate Korteweg-de Vries equation (KdV) solution finite element scheme
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部