In mathematical physics the main goal of quantum mechanics is to obtain the energy spectrum of an atomic system.In many practices,Schrodinger equation which is a second order and linear differential equation is solved...In mathematical physics the main goal of quantum mechanics is to obtain the energy spectrum of an atomic system.In many practices,Schrodinger equation which is a second order and linear differential equation is solved to do this analysis.There are many theoretic mathematical methods serving this purpose.We use Asymptotic Iteration Method(AIM) to obtain the energy eigenvalues of Schrodinger equation in N-dimensional euclidean space for a potential class given as αr^(2d-2)-βr^(d-2).We also obtain a restriction on the eigenvalues that gives degeneracies.Besides,we crosscheck the eigenvalues and degeneracies using the perturbation theory in the view of the AIM.展开更多
The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Poeschl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary ...The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Poeschl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ± i 1)r^-2. In view of spin and pseudo-spin (p-spin) symmetries, the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM). We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ. The non-relativistic limit is also obtained.展开更多
文摘In mathematical physics the main goal of quantum mechanics is to obtain the energy spectrum of an atomic system.In many practices,Schrodinger equation which is a second order and linear differential equation is solved to do this analysis.There are many theoretic mathematical methods serving this purpose.We use Asymptotic Iteration Method(AIM) to obtain the energy eigenvalues of Schrodinger equation in N-dimensional euclidean space for a potential class given as αr^(2d-2)-βr^(d-2).We also obtain a restriction on the eigenvalues that gives degeneracies.Besides,we crosscheck the eigenvalues and degeneracies using the perturbation theory in the view of the AIM.
文摘The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Poeschl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ± i 1)r^-2. In view of spin and pseudo-spin (p-spin) symmetries, the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM). We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ. The non-relativistic limit is also obtained.