Aiming at the inaccurate transmission estimation problem of dark channel prior image dehazing algorithm in the sudden change area of depth of field and sky area,a dehazing algorithm using adaptive dark channel fusion ...Aiming at the inaccurate transmission estimation problem of dark channel prior image dehazing algorithm in the sudden change area of depth of field and sky area,a dehazing algorithm using adaptive dark channel fusion and sky compensation is proposed.Firstly,according to the characteristics of minimum filtering of large window scale and small window scale in the dark channel prior,the fused dark channel is obtained by weighted fusion of the approximate depth of field relationship,thus obtaining the primary transmission.Secondly,use the down-sampling to optimize the primary transmission combined with gray scale image of haze image by fast joint bilateral filtering,then restore the original image size by up-sampling,and the compensation of the Gaussian function is used in the sky area to obtain corrected transmission.Finally,the improved atmospheric light is combined with atmospheric scattering model to recover haze-free image.Experimental results show that the algorithm can recover a large amount of detailed information of the image,obtain high visibility,and effectively eliminate the halo effect.At the same time,it has a better recovery effect on bright areas such as the sky area.展开更多
In this paper, the approximate equation of Chapman's (real) effective depth for Pekeris guide is extended to the complex effective depth approximation whose real and imaginary parts explicate respectively the phas...In this paper, the approximate equation of Chapman's (real) effective depth for Pekeris guide is extended to the complex effective depth approximation whose real and imaginary parts explicate respectively the phase change and energy loss on reflection. It is shown that the homogeneous acoustic field, which comprises the complex effective depth approximation,closely reproduces the character of low modes at small grazing angles, and calculates effectively the acoustic field at longer ranges in shallow water. Application of the complex effective depth approximation can be extended to bottoms having two soft solid layers.展开更多
基金National Natural Science Foundation of China(No.61561030)Natural Science Foundation of Science and Technology Department of Gansu Province(No.1310RJZA050)Basic Research Projects Supported by Operating Expenses of Finance Department of Gansu Province(No.214138)。
文摘Aiming at the inaccurate transmission estimation problem of dark channel prior image dehazing algorithm in the sudden change area of depth of field and sky area,a dehazing algorithm using adaptive dark channel fusion and sky compensation is proposed.Firstly,according to the characteristics of minimum filtering of large window scale and small window scale in the dark channel prior,the fused dark channel is obtained by weighted fusion of the approximate depth of field relationship,thus obtaining the primary transmission.Secondly,use the down-sampling to optimize the primary transmission combined with gray scale image of haze image by fast joint bilateral filtering,then restore the original image size by up-sampling,and the compensation of the Gaussian function is used in the sky area to obtain corrected transmission.Finally,the improved atmospheric light is combined with atmospheric scattering model to recover haze-free image.Experimental results show that the algorithm can recover a large amount of detailed information of the image,obtain high visibility,and effectively eliminate the halo effect.At the same time,it has a better recovery effect on bright areas such as the sky area.
文摘In this paper, the approximate equation of Chapman's (real) effective depth for Pekeris guide is extended to the complex effective depth approximation whose real and imaginary parts explicate respectively the phase change and energy loss on reflection. It is shown that the homogeneous acoustic field, which comprises the complex effective depth approximation,closely reproduces the character of low modes at small grazing angles, and calculates effectively the acoustic field at longer ranges in shallow water. Application of the complex effective depth approximation can be extended to bottoms having two soft solid layers.