Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including...Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including the roles,the history,the current situations,and the trends.One trend is that ASIPs(Application Specific Instruction-set Processors) are taking over ASICs(Application Specific Integrated Circuits) because of the increasing needs both on performance and compatibility of multi-modes.The trend opened opportunities for researchers crossing the boundary between communications and computer architecture.Another trend is the serverlization,i.e.,more infrastructure equipments are replaced by servers.The trend opened opportunities for researchers working towards high performance computing for communication,such as research on communication algorithm kernels and real time programming methods on servers.展开更多
The requirement of the flexible and effective implementation of the Elliptic Curve Cryptography (ECC) has become more and more exigent since its dominant position in the public-key cryptography application.Based on an...The requirement of the flexible and effective implementation of the Elliptic Curve Cryptography (ECC) has become more and more exigent since its dominant position in the public-key cryptography application.Based on analyzing the basic structure features of Elliptic Curve Cryptography (ECC) algorithms,the parallel schedule algorithm of point addition and doubling is presented.And based on parallel schedule algorithm,the Application Specific Instruction-Set Co-Processor of ECC that adopting VLIW architecture is also proposed in this paper.The coprocessor for ECC is implemented and validated using Altera’s FPGA.The experimental result shows that our proposed coprocessor has advantage in high performance and flexibility.展开更多
A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set process...A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.展开更多
The rapid development of multimedia techniques has increased the demands on multimedia processors. This paper presents a new design method to quickly design high performance processors for new multimedia applications....The rapid development of multimedia techniques has increased the demands on multimedia processors. This paper presents a new design method to quickly design high performance processors for new multimedia applications. In this approach, a configurable processor based on the very long instruction-set word architecture is used as the basic core for designers to easily configure new processor cores for multimedia algorithm. Specific instructions designed for multimedia applications efficiently improve the performance of the target processor. Functions not implemented in the digital signal processor (DSP) core can be easily integrated into the target processor as user-defined hardware to increase the performance. Several examples are given based on the architecture. The results show that the processor performance is enhanced approximately 4 times on the H.263 codec and that the processor outperforms both DSPs and single instruction multiple data (SIMD) multimedia extension architectures by up to 8 times when computing the 2-D-IDCT.展开更多
基金The National High-Tech Research and Development Program of China(863 Program)2014AA01A705
文摘Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including the roles,the history,the current situations,and the trends.One trend is that ASIPs(Application Specific Instruction-set Processors) are taking over ASICs(Application Specific Integrated Circuits) because of the increasing needs both on performance and compatibility of multi-modes.The trend opened opportunities for researchers crossing the boundary between communications and computer architecture.Another trend is the serverlization,i.e.,more infrastructure equipments are replaced by servers.The trend opened opportunities for researchers working towards high performance computing for communication,such as research on communication algorithm kernels and real time programming methods on servers.
基金supported by the national high technology research and development 863 program of China.(2008AA01Z103)
文摘The requirement of the flexible and effective implementation of the Elliptic Curve Cryptography (ECC) has become more and more exigent since its dominant position in the public-key cryptography application.Based on analyzing the basic structure features of Elliptic Curve Cryptography (ECC) algorithms,the parallel schedule algorithm of point addition and doubling is presented.And based on parallel schedule algorithm,the Application Specific Instruction-Set Co-Processor of ECC that adopting VLIW architecture is also proposed in this paper.The coprocessor for ECC is implemented and validated using Altera’s FPGA.The experimental result shows that our proposed coprocessor has advantage in high performance and flexibility.
基金Supported by the Industrial Internet Innovation and Development Project of Ministry of Industry and Information Technology (No.GHBJ2004)。
文摘A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.
基金Supported by the National Natural Science Foundation of China (No. 60236020)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050003083)
文摘The rapid development of multimedia techniques has increased the demands on multimedia processors. This paper presents a new design method to quickly design high performance processors for new multimedia applications. In this approach, a configurable processor based on the very long instruction-set word architecture is used as the basic core for designers to easily configure new processor cores for multimedia algorithm. Specific instructions designed for multimedia applications efficiently improve the performance of the target processor. Functions not implemented in the digital signal processor (DSP) core can be easily integrated into the target processor as user-defined hardware to increase the performance. Several examples are given based on the architecture. The results show that the processor performance is enhanced approximately 4 times on the H.263 codec and that the processor outperforms both DSPs and single instruction multiple data (SIMD) multimedia extension architectures by up to 8 times when computing the 2-D-IDCT.