By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability ...By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered.展开更多
In this paper, the velocity anticipation in the optimal velocity model (OVM) is investigated. The driver adjusts the velocity of his vehicle by the desired headway, which depends on both instantaneous headway and re...In this paper, the velocity anticipation in the optimal velocity model (OVM) is investigated. The driver adjusts the velocity of his vehicle by the desired headway, which depends on both instantaneous headway and relative velocity. The effect of relative velocity is measured by a sensitivity function. A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data. It is shown that inclusion of velocity anticipation enhances the stability of traffic flow. Numerical simulations show a good agreement with empirical data. This model provides a better description of real traffic, including the acceleration process from standing states and the deceleration process approaching a stopped car.展开更多
In this paper, a new lattice hydrodynamic model is proposed by incorporating the driver anticipation effect of next-nearest-neighbor site. The linear stability analysis and nonlinear analysis show that the driver anti...In this paper, a new lattice hydrodynamic model is proposed by incorporating the driver anticipation effect of next-nearest-neighbor site. The linear stability analysis and nonlinear analysis show that the driver anticipation effect of next-nearest-neighbor site can enlarge the stable area of traffic flow. The space can be divided into three regions: stab/e, metastable, and unstable. Numerical simulation further illuminates that the driver anticipation effect of the next-neaxest-neighbor site can stabilize tramc flow in our modified lattice model, which is consistent with the analytical results.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. CDJZR11170002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090191110022)
文摘By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered.
基金supported by the National Basic Research Program of China (Grant No.2006CB705500)the National Natural Science Foundation of China (Grant Nos.10532060, 10672098)
文摘In this paper, the velocity anticipation in the optimal velocity model (OVM) is investigated. The driver adjusts the velocity of his vehicle by the desired headway, which depends on both instantaneous headway and relative velocity. The effect of relative velocity is measured by a sensitivity function. A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data. It is shown that inclusion of velocity anticipation enhances the stability of traffic flow. Numerical simulations show a good agreement with empirical data. This model provides a better description of real traffic, including the acceleration process from standing states and the deceleration process approaching a stopped car.
基金Supported by the Key Project of Chinese Ministry of Education under Grant No.211123the Scientific Research Fund of Hunan Provincial Education Department under Grant No.10B072+2 种基金Doctor Scientific Research Startup Project Foundation of Hunan University of Arts and Science under Grant No.BSQD1010the Fund of Key Construction Academic Subject of Hunan Provincethe Natural Science Foundation of Hunan Province under Grant No.14JJ2125
文摘In this paper, a new lattice hydrodynamic model is proposed by incorporating the driver anticipation effect of next-nearest-neighbor site. The linear stability analysis and nonlinear analysis show that the driver anticipation effect of next-nearest-neighbor site can enlarge the stable area of traffic flow. The space can be divided into three regions: stab/e, metastable, and unstable. Numerical simulation further illuminates that the driver anticipation effect of the next-neaxest-neighbor site can stabilize tramc flow in our modified lattice model, which is consistent with the analytical results.