期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Design and Application of a New Distributed Dynamic Spatio-Temporal Privacy Preserving Mechanisms
1
作者 Jiacheng Xiong Xingshu Chen +1 位作者 Xiao Lan Liangguo Chen 《Computers, Materials & Continua》 2025年第8期2273-2303,共31页
In the era of big data,the growing number of real-time data streams often contains a lot of sensitive privacy information.Releasing or sharing this data directly without processing will lead to serious privacy informa... In the era of big data,the growing number of real-time data streams often contains a lot of sensitive privacy information.Releasing or sharing this data directly without processing will lead to serious privacy information leakage.This poses a great challenge to conventional privacy protection mechanisms(CPPM).The existing data partitioning methods ignore the number of data replications and information exchanges,resulting in complex distance calculations and inefficient indexing for high-dimensional data.Therefore,CPPM often fails to meet the stringent requirements of efficiency and reliability,especially in dynamic spatiotemporal environments.Addressing this concern,we proposed the Principal Component Enhanced Vantage-point tree(PEV-Tree),which is an enhanced data structure based on the idea of dimension reduction,and constructed a Distributed Spatio-Temporal Privacy Preservation Mechanism(DST-PPM)on it.In this work,principal component analysis and the vantage tree are used to establish the PEV-Tree.In addition,we designed three distributed anonymization algorithms for data streams.These algorithms are named CK-AA,CL-DA,and CT-CA,fulfill the anonymization rules of K-Anonymity,L-Diversity,and T-Closeness,respectively,which have different computational complexities and reliabilities.The higher the complexity,the lower the risk of privacy leakage.DST-PPM can reduce the dimension of high-dimensional information while preserving data characteristics and dividing the data space into vantage points based on distance.It effectively enhances the data processing workflow and increases algorithmefficiency.To verify the validity of the method in this paper,we conducted empirical tests of CK-AA,CL-DA,and CT-CA on conventional datasets and the PEV-Tree,respectively.Based on the big data background of the Internet of Vehicles,we conducted experiments using artificial simulated on-board network data.The results demonstrated that the operational efficiency of the CK-AA,CL-DA,and CT-CA is enhanced by 15.12%,24.55%,and 52.74%,respectively,when deployed on the PEV-Tree.Simultaneously,during homogeneity attacks,the probabilities of information leakage were reduced by 2.31%,1.76%,and 0.19%,respectively.Furthermore,these algorithms showcased superior utility(scalability)when executed across PEV-Trees of varying scales in comparison to their performance on conventional data structures.It indicates that DST-PPM offers marked advantages over CPPM in terms of efficiency,reliability,and scalability. 展开更多
关键词 Privacy preserving distributed anonymization algorithm VP-Tree data stream internet of vehicles
在线阅读 下载PDF
Novel Block Chain Technique for Data Privacy and Access Anonymity in Smart Healthcare
2
作者 J.Priya C.Palanisamy 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期243-259,共17页
The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applicat... The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applications have beenextensively used. For instance, Healthcare applications execute computations utilizing the user’s private data stored on cloud servers. However, the main obstaclesfaced by the extensive acceptance and usage of these emerging technologies aresecurity and privacy. Moreover, many healthcare data management system applications have emerged, offering solutions for distinct circumstances. But still, theexisting system has issues with specific security issues, privacy-preserving rate,information loss, etc. Hence, the overall system performance is reduced significantly. A unique blockchain-based technique is proposed to improve anonymityin terms of data access and data privacy to overcome the above-mentioned issues.Initially, the registration phase is done for the device and the user. After that, theGeo-Location and IP Address values collected during registration are convertedinto Hash values using Adler 32 hashing algorithm, and the private and publickeys are generated using the key generation centre. Then the authentication is performed through login. The user then submits a request to the blockchain server,which redirects the request to the associated IoT device in order to obtain thesensed IoT data. The detected data is anonymized in the device and stored inthe cloud server using the Linear Scaling based Rider Optimization algorithmwith integrated KL Anonymity (LSR-KLA) approach. After that, the Time-stamp-based Public and Private Key Schnorr Signature (TSPP-SS) mechanismis used to permit the authorized user to access the data, and the blockchain servertracks the entire transaction. The experimental findings showed that the proposedLSR-KLA and TSPP-SS technique provides better performance in terms of higherprivacy-preserving rate, lower information loss, execution time, and Central Processing Unit (CPU) usage than the existing techniques. Thus, the proposed method allows for better data privacy in the smart healthcare network. 展开更多
关键词 Adler 32 hashing algorithm linear scaling based rider optimization algorithm with integrated KL anonymity(LSR-KLA) timestamp-based public and private key schnorr signature(TSPP-SS) blockchain internet of things(IoT) healthcare
在线阅读 下载PDF
Multi-Candidate Voting Model Based on Blockchain 被引量:3
3
作者 Dongliang Xu Wei Shi +1 位作者 Wensheng Zhai Zhihong Tian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第12期1891-1900,共10页
Electronic voting has partially solved the problems of poor anonymity and low efficiency associated with traditional voting.However,the difficulties it introduces into the supervision of the vote counting,as well as i... Electronic voting has partially solved the problems of poor anonymity and low efficiency associated with traditional voting.However,the difficulties it introduces into the supervision of the vote counting,as well as its need for a concurrent guaranteed trusted third party,should not be overlooked.With the advent of blockchain technology in recent years,its features such as decentralization,anonymity,and non-tampering have made it a good candidate in solving the problems that electronic voting faces.In this study,we propose a multi-candidate voting model based on the blockchain technology.With the introduction of an asymmetric encryption and an anonymity-preserving voting algorithm,votes can be counted without relying on a third party,and the voting results can be displayed in real time in a manner that satisfies various levels of voting security and privacy requirements.Experimental results show that the proposed model solves the aforementioned problems of electronic voting without significant negative impact from an increasing number of voters or candidates. 展开更多
关键词 Blockchain multi-candidate voting model VOTING voting anonymity confusion algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部