期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
Porous cathode enables continuous flow anodic oxidation for water purification:Performance and mechanisms
1
作者 Runsheng Xu Haotian Wu +3 位作者 Daoyuan Zu Kui Yang Xiangtong Kong Jinxing Ma 《Chinese Chemical Letters》 2025年第8期655-660,共6页
Flow anodic oxidation system has demonstrated to be a promising and environmental benign water treatment technology because of its advantages of high contaminant removal efficiency and low energy consumption.However,t... Flow anodic oxidation system has demonstrated to be a promising and environmental benign water treatment technology because of its advantages of high contaminant removal efficiency and low energy consumption.However,traditional setup needs an external unit for flow anode material separation and recovery,which inevitably increases the capital cost and hinders its continuous operation.Herein,a specific porous cathode is introduced to achieve continuous water purification with high contaminant removal in a flow anodic oxidation system.The efuent concentration of carbamazepine(CBZ),a common and model contaminant widely detected in natural water environment,was reduced by 99%.The linear sweep voltammetry(LSV)and quenching tests demonstrated that HO·was the dominant reactive species.While the removal of contaminants was inhibited in practical surface water,largely related to the quenching by dissolved organic matter and bicarbonate,the flow anodic oxidation process was competent in alleviating the ecotoxicity following oxidation.Our study constructs a modular device for cost-effective continuous water purification and provides insight into the mechanisms of flow andic oxidation. 展开更多
关键词 Water purification Flow anodic oxidation Porous cathode Magneli phase titanium suboxide CARBAMAZEPINE
原文传递
Influence of adipic acid on anodic film formation and corrosion resistance of 2024 aluminum alloy 被引量:4
2
作者 李英东 张优 +1 位作者 李松梅 赵丕植 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期492-500,共9页
The influence of adipic acid on the formation and corrosion resistance of anodic oxide film fabricated on 2024 aluminum alloy was investigated. The morphology was investigated by scanning electron microscopy (SEM) a... The influence of adipic acid on the formation and corrosion resistance of anodic oxide film fabricated on 2024 aluminum alloy was investigated. The morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS). The results showed that the adipic acid was absorbed at the electrolyte/anodic layer interface during anodizing. The corrosion rate of anodic film decreased and the film thickness increased. The film was uniform and compact especially at the film/substrate interface. After sealing procedure, anodic film formed with the addition of adipic acid exhibited improved dielectric property and corrosion resistance in aggressive environment. 展开更多
关键词 aluminum alloy anodic oxidation adipic acid ADSORPTION CORROSION
在线阅读 下载PDF
Influence of oxidation heat on hard anodic film of aluminum alloy 被引量:5
3
作者 魏晓伟 陈朝英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2707-2712,共6页
The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to t... The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant. 展开更多
关键词 aluminum alloy 2024 aluminum alloy oxidation heat sulfuric acid electrolyte hard anodic oxidation anodic film
在线阅读 下载PDF
Phenol degradation by anodic oxidation on boron-doped diamond electrode combining TiO_2 Photocatalysis
4
作者 戎非 顾林娟 +2 位作者 邱烨静 付德刚 吴巍 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期421-425,共5页
Boron-doped diamond (BDD) electrocatalysis is combined with photocatalysis using titanium dioxide (TiO2) as a catalyst to improve pollutant-oxidation efficiency. Phenol solution is chosen as model wastewater. Diff... Boron-doped diamond (BDD) electrocatalysis is combined with photocatalysis using titanium dioxide (TiO2) as a catalyst to improve pollutant-oxidation efficiency. Phenol solution is chosen as model wastewater. Different methods involving BDD and/or TiO2 during the degradation processes are compared. Parameters such as the currency density and initial concentration are varied in order to determine their effects on the oxidation process. Moreover, the degradation kinetics of phenol is experimentally studied. The results reveal the superiority of series combination of BDD and TiO2, especially the treatment process of electrocatalysis and succedent photocatalysis, and the optimum working currency density for electrocatalysis is 25.48 mA/cm2. The removal rate decreases with the increase in the initial phenol concentration and the degradation reaction follows quasi-first-order kinetics equation. 展开更多
关键词 boron-doped diamond (BDD) anodic oxidation titanium dioxide PHENOL
在线阅读 下载PDF
Effect of the microstructure of Al 7050-T7451 on anodic oxide formation in sulfuric acid 被引量:17
5
作者 Jian-hua Liu Ming Li Song-mei Li Min Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第4期432-438,共7页
The effect of the microstructure of an Al 7050-T7451 substrate on the anodic oxide formation in sulfuric acid was studied in this article. The microstructure of the substrate was assessed by optical microscope (OM) ... The effect of the microstructure of an Al 7050-T7451 substrate on the anodic oxide formation in sulfuric acid was studied in this article. The microstructure of the substrate was assessed by optical microscope (OM) and transmission electron microscope (TEM). The surface and cross-section morphologies of the oxide films were examined by scanning electron microscope (SEM). The chemical composition of intermetallic particles in the alloys and films was investigated using energy dispersive spectroscope (EDS). The roles of intermetallic phases and grain or subgrain boundaries on the oxide film formation were researched using the potentiodynamic and potentiostatic polarization technique in sulfuric acid solution. The results show that the transition of coarse intermetallic particles or grain (subgrain) boundaries at the surface of Al alloys can be characterized by potentiodynamic polarization curves. The surface and cross-section micrographs of the anodic layer seem to preserve the microstructure of the substrate. Large cavities in the anodic films are caused by the preferential dissolution of coarse AItCuMg particles and the entrance of Cu-rich remnants into the electrolyte during anodizing. The Al7Cu2Fe particles tend to be occluded in the oxide layer or lose from the oxide surface because of peripheral trenching. Small pores in the films are induced by the dissolution of precipitates in grain or subgrain boundaries. The film surface of recrystallized grain bodies is smooth and homogeneous. 展开更多
关键词 aluminum alloys anodic oxide intermetallic particles grain boundaries
在线阅读 下载PDF
Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy 被引量:9
6
作者 Song-mei Li Ying-dong Li +2 位作者 You Zhang Jian-hua Liu Mei Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第2期167-174,共8页
Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered in- termetallic particles were examined by scanning electron microscopy (SEM) and energy dis... Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered in- termetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaC1 solution. The results show that the size of A1-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the an- odic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time. 展开更多
关键词 aluminum alloys intermetallic particles anodic oxidation CORROSION protective films
在线阅读 下载PDF
Photocatalytic activity of porous TiO_2 films prepared by anodic oxidation 被引量:8
7
作者 WANG Wei TAO Jie WANG Tao WANG Ling 《Rare Metals》 SCIE EI CAS CSCD 2007年第2期136-141,共6页
Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidat... Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition. 展开更多
关键词 TITANIUM porous films anodic oxidation PHOTOCATALYSIS methyl orange
在线阅读 下载PDF
Nickel-free sealing technology for anodic oxidation film of aluminum alloy at room temperature 被引量:9
8
作者 Xue-Long Hao Ning Zhao +2 位作者 Hong-Hai Jin Wen Ma Dong-Hui Zhang 《Rare Metals》 SCIE EI CAS CSCD 2021年第4期968-974,共7页
Different additives were added into the potassium fluorozirconate solution to prepare different nickelfree sealing reagents,with which the anodic oxidation film of aluminum alloy was sealed at room temperature.The pho... Different additives were added into the potassium fluorozirconate solution to prepare different nickelfree sealing reagents,with which the anodic oxidation film of aluminum alloy was sealed at room temperature.The phosphor chromic acid weight loss method was used to evaluate the sealing effects.Using electron scanning microscopy(SEM),the surface and cross-sectional micromorphologies of the anodic oxidation films sealed by different fluorozirconate sealants were observed.The position and state of zirconium element distribution in the film hole were investigated by the further quantitative and distribution analysis of Zr element.This study provides an experimental evidence for the theoretical studies of fluorozirconate-sealed anodic oxidation films.It is shown that the fluorozirconate has good sealing effects and has a wide prospect for sealing the aluminum alloy samples.Its products were highly corrosion resistant,and were filled in the openings of the micropores in the oxide film. 展开更多
关键词 Aluminum alloy anodic oxidation film Nickel-free sealing FLUOROZIRCONATE
原文传递
Fabrication and characterization of anodic oxide films on a Ti-10V-2Fe-3Al titanium alloy 被引量:6
9
作者 Jian-hua Liu Jun-lan Yi Song-mei Li Mei Yu Yong-zhen Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第1期96-100,共5页
Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characte... Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase. 展开更多
关键词 titanium alloys anodic oxide films titanium dioxide pulse current method
在线阅读 下载PDF
Chemical dissolution resistance of anodic oxide layers formed on aluminum 被引量:5
10
作者 W.BENSALAH M.FEKI +1 位作者 M.WERY H.F.AYEDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1673-1679,共7页
Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-... Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-80 specifications:35mL/L 85% H3PO4+20g/L CrO3 at 38℃.Influence of oxalic acid concentration,bath temperature and anodic current density on dissolution rate and coating ratio was examined,when the sulphuric acid concentration was maintained at 160g/L.It was found that chemically resistant and compact oxide layers were produced under low operational temperature (5℃) and high current densities (3A/dm^2).A beneficial effect was observed concerning the addition of oxalic acid (18g/L).The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM),atomic force microscopy (AFM) and glow-discharge optical emission spectroscopy (GDOES). 展开更多
关键词 ALUMINUM anodic oxide layer oxalic acid-sulphuric anodization dissolution rate coating ratio
在线阅读 下载PDF
Morphology and growth of porous anodic oxide films on Ti-10V-2Fe-3Al in neutral tartrate solution 被引量:5
11
作者 易俊兰 刘建华 +3 位作者 李松梅 于美 吴国龙 吴量 《Journal of Central South University》 SCIE EI CAS 2011年第1期6-15,共10页
Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning el... Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed. 展开更多
关键词 titanium alloy porous anodic oxide films morphology evolution growth mechanism
在线阅读 下载PDF
Electrochemical incineration of dimethyl phthalate by anodic oxidation with boron-doped diamond electrode 被引量:5
12
作者 HOU Yining QU Jiuhui +1 位作者 ZHAO Xu LIU Huijuan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第10期1321-1328,共8页
The anodic oxidation of aqueous solutions containing dimethyl phthalate (DMP) up to 125 mg/L with sodium sulfate (Na2SO4) as supporting electrolyte within the pH range 2.0-10.0 was studied using a one-compartment ... The anodic oxidation of aqueous solutions containing dimethyl phthalate (DMP) up to 125 mg/L with sodium sulfate (Na2SO4) as supporting electrolyte within the pH range 2.0-10.0 was studied using a one-compartment batch reactor employing a boron-doped diamond (BDD) as anode. Electrolyses were carded out at constant current density (1.5-4.5 mA/cm^2). Complete mineralization was always achieved owing to the great concentration of hydroxyl radical (-OH) generated at the BDD surface. The effects of pH, apparent current density and initial DMP concentration on the degradation rate of DMP, the specific charge required for its total mineralization and mineralization current efficiency were investigated systematically. The mineralization rate of DMP was found to be pH-independent and to increase with increasing applied current density. Results indicated that this electrochemical process was subjected, at least partially, to the mass transfer of organics onto the BDD surface. Kinetic analysis of the temporal change of DMP concentration during electrolysis determined by High Performance Liquid Chromatography (HPLC) revealed that DMP decay under all tested conditions followed a pseudo first-order reaction. Aromatic intermediates and generated carboxylic acids were identified by Gas Chromatography- Mass Spectrometry (GC-MS) and a general pathway for the electrochemical incineration of DMP on BDD was proposed. 展开更多
关键词 dimethyl phthalate anodic oxidation boron-doped diamond MINERALIZATION
在线阅读 下载PDF
A green and efficient access to aryl nitriles via an electrochemical anodic oxidation 被引量:3
13
作者 Jia-Qian Ye Zhen-Lei Zhang +1 位作者 Zheng-Gen Zha Zhi-Yong Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第8期1112-1114,共3页
The nitrile functionality is a key building block in synthetic chemistry, and has wide applications in pharmaceuticals. However, traditional methodologies for the synthesis of nitriles are limited to harsh reaction co... The nitrile functionality is a key building block in synthetic chemistry, and has wide applications in pharmaceuticals. However, traditional methodologies for the synthesis of nitriles are limited to harsh reaction conditions. Herein, we report a new and efficient access to aryl nitriles by an electrochemical synthesis. Compared with the conventional synthetic methods, this electrochemical synthesis is more environmentally friendly and easier to handle. 展开更多
关键词 Eletrochemistry anodic oxidation Aryl nitrile
原文传递
Improvement in antibacterial ability and cell cytotoxicity of Ti-Cu alloy by anodic oxidation 被引量:2
14
作者 Shuang Cao Zi-Ming Zhang +6 位作者 Jia-Qi Zhang Ren-Xian Wang Xiao-Yan Wang Lei Yang Da-Fu Chen Gao-Wu Qin Er-Lin Zhang 《Rare Metals》 SCIE EI CAS CSCD 2022年第2期594-609,共16页
Ti-Cu alloy has potential to be used in plastic surgery and dental implants due to its strong antibacterialproperties,high strength and good corrosion resistance.In this paper,Ti-5Cu was anodic-oxidized to enhance the... Ti-Cu alloy has potential to be used in plastic surgery and dental implants due to its strong antibacterialproperties,high strength and good corrosion resistance.In this paper,Ti-5Cu was anodic-oxidized to enhance the surface compatibility.The influence of the oxidation on the corrosion resistance,antibacterial properties and biological properties was investigated.X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)results showed that a double-layer oxide coating with dense inner layer and porous outside layer was formed on Ti-Cu sample.The oxide coating consisted mainly of TiO2,CuzO and small amount of CuO,improved the corrosion resistance of Ti-Cu alloy by one order of magnitude due to the formation of the dense oxide inner layer,but high Cu ion release was detected.The plate count results showed that the antibac-terial activity of Ti-Cu sample was improved to≥99%due to the comprehensive function of CuO and Cu_(2)O in the coating and Cu^(2+)release.Cell test results showed that thecoating exhibited good cell compatibility,the porous sur-face structure improved the adhesion of cells,and Cu ion release promoted the cell proliferation. 展开更多
关键词 Titanium-copper alloy anodic oxidation Corrosion resistance Antibacterial activity Cell adhesion Surface modification
原文传递
Preparation and crystalline phase of a TiO_2 porous film by anodic oxidation 被引量:2
15
作者 WANG Wei TAO Jie ZHANG Weiwei TAO Haijun WANG Ling 《Rare Metals》 SCIE EI CAS CSCD 2005年第4期330-335,共6页
Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this... Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and mille. In addition, the forming mechanism of anatase and mille TiO2 porous films was discussed. 展开更多
关键词 metal materials titanium oxide porous film anodic oxidation ANATASE RUTILE
在线阅读 下载PDF
Corrosion Behavior of Anodic Oxidized TiO_2 Film in Seawater 被引量:2
16
作者 WANG Min WANG Wei HE Benlin SUN Mingliang YIN Yansheng LIU Lan ZOU Wuyuan XU Xuefei 《Journal of Ocean University of China》 SCIE CAS 2010年第4期376-380,共5页
TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning ... TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Water contact angles on titanium oxide film surface were measured under both dark and sunlight illumination conditions.Corrosion tests were carried out in seawater under different illumination conditions by electrochemistry impedance spectrum (EIS) and polarization curves.The result showed that the TiO2 film prepared by the anodic oxidation method was anatase with a uniform structure and without obvious pores or cracks on its surface.The average water contact angle of the film was 116.4? in dark, in contrast to an angle of 42.7? under the UV illumination for 2 hours, which demonstrates good hydrophobic property.The anti-corrosion behavior of the TiO2 film was declining with the extended immersion time.Under dark conditions, however, the hydrophobic TiO2 film retarded the water infiltrating into the substrate.The impedance changed slowly and the corrosion current density was 2 orders of magnitude lower than that with the film illuminated by sunlight.All of those mentioned above indicate that the TiO2 film possesses much better performance under dark condition, and it can be applied as an engineering material under dark seawater environment. 展开更多
关键词 TiO2 film anodic oxidation method HYDROPHOBIC corrosion resistance electrochemistry impedance spectrum(EIS)
在线阅读 下载PDF
Electrochemical anodic oxidation assisted fabrication of memristors 被引量:1
17
作者 Shuai-Bin Hua Tian Jin Xin Guo 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期250-272,共23页
Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile me... Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated. 展开更多
关键词 anodic oxidation anodized aluminium oxide MEMRISTOR resistive switching electrical properties
在线阅读 下载PDF
EIS Characterization of Sealed Anodic Oxide Films on Titanium Alloy Ti-10V-2Fe-3Al 被引量:1
18
作者 刘建华 WU Liang +3 位作者 YU Mei LI Songmei WU Guolong ZHANG You 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期599-605,共7页
Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron... Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron microscopy (FE-SEM), and were chemically analysed by using energy dispersive spectroscopy (EDS). Corrosion behaviour was investigated in a 3.5% sodium chloride solution, using electrochemical impedance spectroscopy (EIS). The morphology of the anodic oxide films was dependent on the sealing processes. The surface sealed in calcium acetate solution presented a more homogeneous and smooth structure compared with that sealed in boiling deionised water. The corrosion resistance of the oxide films sealed in calcium acetate solution was better than that sealed in boiling deionised water. 展开更多
关键词 EIS anodic oxide films sealed calcium acetate TI-10V-2FE-3AL
原文传递
Anodic Oxidation on Structural Evolution and Tensile Properties of Polyacrylonitrile Based Carbon Fibers with Different Surface Morphology 被引量:5
19
作者 Zhaorui Li Jianbin Wang Yuanjian Tong Lianghua Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第12期1123-1129,共7页
Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface s... Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface structures, surface morphology and residual mechanical properties were characterized. The crystallite size (La) of carbon fibers would be interrupted due to excessive electrochemical etching, while the crystallite spacing (d(002)) increased as increasing current density. The disordered structures on the surface of carbon fiber with rough surface increased at the initial oxidation stage and then removed by further electrochemical etching, which resulting in continuous increase of the extent of graphitization on the fiber surface. However, the electrochemical etching was beneficial to getting ordered morphology on the surface for carbon fiber with smooth surface, especially when the current density was lower than 1.77 A/m 2 . The tensile strength and tensile modulus could be improved by 17.27% and 5.75%, respectively, and was dependent of surface morphology. The decreasing density of carbon fibers probably resulted from the volume expansion of carbon fibers caused by the abundant oxygen functional groups intercalated between the adjacent graphite layers. 展开更多
关键词 Carbon fibers anodic oxidation Structural evolution Tensile property Surface morphology
原文传递
Electrochemical Fabrication of Pd-Ag Alloy Nanowire Arrays in Anodic Alumina Oxide Template 被引量:1
20
作者 Erhong YUE Gang YU +3 位作者 Yuejun OUYANG Baicheng WENG Weiwei SI Liyuan YE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第6期850-856,共7页
The synthesis of Pd-Ag alloy nanowires in nanopores of porous anodic aluminum oxide (AAO) template by electrochemical deposition technique was reported. Pd-Ag alloy nanowires with 16%-25% Ag content are expected to ... The synthesis of Pd-Ag alloy nanowires in nanopores of porous anodic aluminum oxide (AAO) template by electrochemical deposition technique was reported. Pd-Ag alloy nanowires with 16%-25% Ag content are expected to serve as candidates of useful nanomaterials for the hydrogen sensors. Scanning electron microscopy (SEM) and energy dispersed X-ray spectroscopy (EDX) were employed to characterize the morphologies and compositions of the Pd-Ag nanowires. X-ray diffraction (XRD) was used to characterize the phase properties of the Pd-Ag nanowires. Pd-Ag alloy nanowire arrays with 17.28%-23.76% Ag content have been successfully fabricated by applying potentials ranging from -0.8 to -1.0 V (vs SCE). The sizes of the alloy nanowires are in agreement with the diameter of AAO nanopores. The underpotential deposition of Ag+ on Pd and Au plays an important role in producing an exceptionally high Ag content in the alloy. Alloy compositions can still be controlled by adjusting the ion concentration ratio of Pd^2+ and Ag+ and the electrodeposition processes. XRD shows that nanowires obtained are in the form of alloy of Pd and Ag. 展开更多
关键词 Pd-Ag Alloy nanowires anodic aluminum oxide template ELECTRODEPOSITION
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部