期刊文献+
共找到2,824篇文章
< 1 2 142 >
每页显示 20 50 100
A LiF-Pie-Structured Interphase for Silicon Anodes 被引量:1
1
作者 Weiping Li Shiwei Xu +7 位作者 Cong Zhong Qiu Fang Suting Weng Yinzi Ma Bo Wang Yejing Li Zhaoxiang Wang Xuefeng Wang 《Nano-Micro Letters》 2025年第12期566-577,共12页
Silicon(Si)is a promising anode material for rechargeable batteries due to its high theoretical capacity and abundance,but its practical application is hindered by the continuous growth of porous solid-electrolyte int... Silicon(Si)is a promising anode material for rechargeable batteries due to its high theoretical capacity and abundance,but its practical application is hindered by the continuous growth of porous solid-electrolyte interphase(SEI),leading to capacity fade.Herein,a LiF-Pie structured SEI is proposed,with LiF nanodomains encapsulated in the inner layer of the organic cross-linking silane matrix.A series of advanced techniques such as cryogenic electron microscopy,time-of-flight secondary ion mass spectrometry,and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry have provided detailed insights into the formation mechanism,nanostructure,and chemical composition of the interface.With such SEI,the capacity retention of LiCoO_(2)||Si is significantly improved from 49.6%to 88.9%after 300 cycles at 100 mA g^(-1).These findings provide a desirable interfacial design principle with enhanced(electro)chemical and mechanical stability,which are crucial for sustaining Si anode functionality,thereby significantly advancing the reliability and practical application of Si-based anodes. 展开更多
关键词 Si anodes Solid electrolyte interface Electrolyte additive
在线阅读 下载PDF
Recent progress in constructing fluorinated solid-electrolyte interphases for stable lithium metal anodes
2
作者 Di Zhang Pengfei Lv +2 位作者 Wei Qin Xin He Yuanhua He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期270-291,共22页
Lithium metal batteries(LMBs)are emerging as a promising energy storage solution owing to their high energy density and specific capacity.However,the non-uniform plating of lithium and the potential rupture of the sol... Lithium metal batteries(LMBs)are emerging as a promising energy storage solution owing to their high energy density and specific capacity.However,the non-uniform plating of lithium and the potential rupture of the solid-electrolyte interphase(SEI)during extended cycling use may result in dendrite growth,which can penetrate the separator and pose significant short-circuit risks.Forming a stable SEI is essential for the long-term operation of the batteries.Fluorine-rich SEI has garnered significant attention for its ability to effectively passivate electrodes,regulate lithium deposition,and inhibit electrolyte corrosion.Understanding the structural components and preparation methods of existing fluorinated SEI is crucial for optimizing lithium metal anode performance.This paper reviews the research on optimizing LiF passivation interfaces to protect lithium metal anodes.It focuses on four types of compositions in fluorinated SEI that work synergistically to enhance SEI performance.For instance,combining compounds with LiF can further enhance the mechanical strength and ionic conductivity of the SEI.Integrating metals with LiF significantly improves electrochemical performance at the SEI/anode interface,with a necessary focus on reducing electron tunneling risks.Additionally,incorporating polymers with LiF offers balanced improvements in interfacial toughness and ionic conductivity,though maintaining structural stability over long cycles remains a critical area for future research.Although alloys combined with LiF increase surface energy and lithium affinity,challenges such as dendrite growth and volume expansion persist.In summary,this paper emphasizes the crucial role of interfacial structures in LMBs and offers comprehensive guidance for future design and development efforts in battery technology. 展开更多
关键词 LIF lithium metal anodes solid-electrolyte interphase interface cycling stability
在线阅读 下载PDF
High-capacity and low-expansion MnCO_(3)@cyclized-PAN composite anodes for high-performance lithium-ion batteries
3
作者 Kai Zhang Wen-Ze Cao +7 位作者 Jing Wang Ze-Nan Zhao Wei-Ang Yin Zhao Lv Jun-Fan Zhang Ran Wang Feng Wu Guo-Qiang Tan 《Rare Metals》 2025年第5期3575-3581,共7页
MnCO_(3)represents a potentially high-capacity and low-cost anode candidate to replace graphite for enhancing energy density of commercial lithium-ion batteries,but it suffers from poor electrical conductivity and ser... MnCO_(3)represents a potentially high-capacity and low-cost anode candidate to replace graphite for enhancing energy density of commercial lithium-ion batteries,but it suffers from poor electrical conductivity and serious volumetric change,largely hindering its practical applications. 展开更多
关键词 low expansion high performance enhancing energy density mnco composite high capacity anodes cyclized pan
原文传递
Anodes for magnesium batteries:State-of-the-art and prospects.A viewpoint
4
作者 Maximilian Fichtner 《Journal of Magnesium and Alloys》 2025年第9期4061-4063,共3页
1.Motivation.There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li ion batteries are limited by price fluctuations of resources,resource availabi... 1.Motivation.There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li ion batteries are limited by price fluctuations of resources,resource availability,as well as their theoretical capacities so that the community is exploring alternative battery chemistries to expand the portfolio of available battery types. 展开更多
关键词 alternative battery chemistries li ion batteries rechargeable batteries battery chemistries magnesium batteries resource limitations anodes
在线阅读 下载PDF
A sterically-hindered organic molecule to modulate hydrogen bonding and the electrical double layer for highly reversible zinc anodes
5
作者 Rongsheng Guo Yongfeng Huang +5 位作者 Chang Shu Rui Yao Yifu Gao Wenbao Liu Zhichun Si Feiyu Kang 《Journal of Energy Chemistry》 2025年第6期280-291,I0007,共13页
The practical application of emerging rechargeable aqueous zinc(Zn)batteries is challenged by the poor reversibility and cycling stability of Zn anodes,primarily due to parasitic side reactions.While numerous strategi... The practical application of emerging rechargeable aqueous zinc(Zn)batteries is challenged by the poor reversibility and cycling stability of Zn anodes,primarily due to parasitic side reactions.While numerous strategies have been proposed,balancing the suppression of side reactions with the maintenance of fast Zn plating/stripping kinetics remains a significant challenge.In this study,sucrose,a sterically-hindered organic molecule with abundant hydroxyl groups,is employed to suppress the side reactions and maintain the moderate kinetics of Zn plating/stripping by modulating the hydrogen bond network without altering the Zn^(2+)solvation structure.Its steric hindrance effect further impedes the lateral diffusion of Zn atoms on the electrode surface within the electric double layer,effectively mitigating dendrite growth and stabilizing the electrodeposition process.Consequently,the formulated Suc/ZnSO_(4)electrolyte achieves a remarkably Coulombic efficiency of 99.90% over 2600 cycles at 3 mA cm^(-2)for 1 mAh cm^(-2)in Zn‖Cu cells.The enhanced Zn anode reversibility leads to excellent cycling stability in Zn‖LiFePO_(4)cells and Zn‖β-MnO_(2)cells.This study underscores the potential of sterically-hindered organic molecule strategies to enhance Zn anode stability while maintaining favorable Zn deposition/stripping dynamics in aqueous Zn batteries. 展开更多
关键词 Organic molecule Steric effect Interfacial dynamics Hydrogen bonding Electrical double layer Zinc anodes
在线阅读 下载PDF
Exploring the optimal molecular weight of polyacrylic acid binder for silicon nanoparticle anodes in lithium-ion batteries
6
作者 Zhengwei Wan Siying Li +7 位作者 Weiting Tang Chengjun Dai Jingting Yang Zheng Lin Juncheng Qiu Min Ling Zhan Lin Zeheng Li 《Journal of Energy Chemistry》 2025年第6期76-86,I0003,共12页
Polyacrylic acid(PAA)-based binders have been demonstrated to significantly enhance the cycling stability of pure silicon(Si)anodes compared to other binder types.However,there is a notable lack of systematic and in-d... Polyacrylic acid(PAA)-based binders have been demonstrated to significantly enhance the cycling stability of pure silicon(Si)anodes compared to other binder types.However,there is a notable lack of systematic and in-depth investigation into the relationship between the molecular weight(MW)of PAA and its performance in pure Si anodes,leading to an absence of reliable theoretical guidance for designing and optimizing of PAA-based binders for these anodes.Herein,we select a series of PAA with varying MWs as binders for Si nanoparticle(SiNP)anodes to systematically identify the optimal MW of PAA for enhancing the electrochemical performance of SiNP anodes.The actual MWs of the various PAA were confirmed by gel permeation chromatography to accurately establish the relationship between MW and binder performance.Within an ultrawide weight average molecular weight(M_(w))range of 35.9-4850 kDa,we identify that the PAA binder with a M_(w)of 1250 kDa(PAA125)exhibits the strongest mechanical strength and the highest adhesion strength,attributed to its favorable molecular chain orientation and robust interchain interactions.These characteristics enable the SiNP anodes utilizing PAA125 to maintain the best interfacial chemistry and bulk mechanical structure stability,leading to optimal electrochemical performance.Notably,the enhancement in cycling stability of SiNP anode by PAA125 under practical application conditions is further validated by the 1.1 Ah LLNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/SiNP@PAA125 pouch cell. 展开更多
关键词 Silicon anodes Polyacrylic acid BINDER Average molecular weight Pouch cells
在线阅读 下载PDF
Microenvironment regulation of anode-electrolyte interface enables highly stable Zn anodes
7
作者 Lin Peng Xincheng Liang +6 位作者 Zelong Sun Xingfa Chen Dexin Meng Renshu Huang Qian Liu Huan Wen Shibin Yin 《Chinese Journal of Structural Chemistry》 2025年第4期26-36,共11页
H_(2)O-induced side reactions and dendrite growth occurring at the Zn anode-electrolyte interface(AEI)limit the electrochemical performances of aqueous zinc ion batteries.Herein,methionine(Met)is introduced as an elec... H_(2)O-induced side reactions and dendrite growth occurring at the Zn anode-electrolyte interface(AEI)limit the electrochemical performances of aqueous zinc ion batteries.Herein,methionine(Met)is introduced as an electrolyte additive to solve the above issues by three aspects:Firstly,Met is anchored on Zn anode by amino/methylthio groups to form a H_(2)O-poor AEI,thus increasing the overpotential of hydrogen evolution reaction(HER);secondly,Met serves as a pH buffer to neutralize the HER generated OH-,thereby preventing the formation of by-products(e.g.Zn_(4)SO_(4)(OH)_(6)·xH_(2)O);thirdly,Zn^(2+) could be captured by carboxyl group of the anchored Met through electrostatic interaction,which promotes the dense and flat Zn deposition.Consequently,the Zn||Zn symmetric cell obtains a long cycle life of 3200 h at 1.0 mA cm^(-2),1.0 mAh cm^(-2),and 1400 h at 5.0 mA cm^(-2),5.0 mAh cm^(-2).Moreover,Zn||VO_(2) full cell exhibits a capacity retention of 91.0%after operating for 7000 cycles at 5.0 A g^(-1).This study offers a novel strategy for modulating the interface microenvironment of AEI via integrating the molecular adsorption,pH buffer,and Zn^(2+) capture strategies to design advanced industrial-oriented batteries. 展开更多
关键词 Aqueous zinc ion batteries Zn anodes Electrolyte additives Anode-electrolyte interface Capture effect pH buffer
原文传递
Cationic Adsorption‑Induced Microlevelling Effect:A Pathway to Dendrite‑Free Zinc Anodes
8
作者 Long Jiang Yiqing Ding +5 位作者 Le Li Yan Tang Peng Zhou Bingan Lu Siyu Tian Jiang Zhou 《Nano-Micro Letters》 2025年第9期16-28,共13页
Dendrite growth represents one of the most significant challenges that impede the development of aqueous zinc-ion batteries.Herein,Gd^(3+)ions are introduced into conventional electrolytes as a microlevelling agent to... Dendrite growth represents one of the most significant challenges that impede the development of aqueous zinc-ion batteries.Herein,Gd^(3+)ions are introduced into conventional electrolytes as a microlevelling agent to achieve dendrite-free zinc electrodeposition.Simulation and experimental results demonstrate that these Gd^(3+)ions are preferentially adsorbed onto the zinc surface,which enables dendritefree zinc anodes by activating the microlevelling effect during electrodeposition.In addition,the Gd^(3+)additives effectively inhibit side reactions and facilitate the desolvation of[Zn(H_(2)O)_(6)]^(2+),leading to highly reversible zinc plating/stripping.Due to these improvements,the zinc anode demonstrates a significantly prolonged cycle life of 2100 h and achieves an exceptional average Coulombic efficiency of 99.72%over 1400 cycles.More importantly,the Zn//NH_(4)V_(4)O_(10)full cell shows a high capacity retention rate of 85.6%after 1000 cycles.This work not only broadens the application of metallic cations in battery electrolytes but also provides fundamental insights into their working mechanisms. 展开更多
关键词 Aqueous zinc-ion batteries Zinc anodes Rare-earth cations Microlevelling Zinc dendrites
在线阅读 下载PDF
Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes:A review
9
作者 Haobo Wang Fei Wang +6 位作者 Yong Liu Zhongxiu Liu Yingjie Miao Wanhong Zhang Guangxin Wang Jiangtao Ji Qiaobao Zhang 《Chinese Chemical Letters》 2025年第2期133-144,共12页
Lithium metal is one of the most promising anodes for lithium batteries because of their high theoretical specific capacity and the low electrochemical potential.However,the commercialization of lithium metal anodes(L... Lithium metal is one of the most promising anodes for lithium batteries because of their high theoretical specific capacity and the low electrochemical potential.However,the commercialization of lithium metal anodes(LMAs)is facing significant obstacles,such as uncontrolled lithium dendrite growth and unstable solid electrolyte interface,leading to inferior Coulombic efficiency,unsatisfactory cycling stability and even serious safety issues.Introducing low-cost natural clay-based materials(NCBMs)in LMAs is deemed as one of the most effective methods to solve aforementioned issues.These NCBMs have received considerable attention for stabilizing LMAs due to their unique structure,large specific surface areas,abundant surface groups,high mechanical strength,excellent thermal stability,and environmental friendliness.Considering the rapidly growing research enthusiasm for this topic in the last several years,here,we review the recent progress on the application of NCBMs in stable and dendrite-free LMAs.The different structures and modification methods of natural clays are first summarized.In addition,the relationship between their modification methods and nano/microstructures,as well as their impact on the electrochemical properties of LMAs are systematically discussed.Finally,the current challenges and opportunities for application of NCBMs in stable LMAs are also proposed to facilitate their further development. 展开更多
关键词 Natural clay-based materials Aolid-state electrolyte Surface modification Li metal anodes Rechargeable batteries
原文传递
Synergistic regulation engineering of interfacial charge by N-Zn-F coordinated triazine-based COF for dendrite-free lithium metal anodes
10
作者 Liya Rong Yifeng Han +4 位作者 Hongling Yao Genwei Liu Chi Zhang Xianbao Wang Tao Mei 《Journal of Energy Chemistry》 2025年第6期407-417,I0010,共12页
The disorganized lithium dendrites and unstable solid electrolyte interphase(SEI)severely impede the practical application of lithium metal batteries(LMBs).Herein,the N-Zn-F coordinated triazine-based covalent organic... The disorganized lithium dendrites and unstable solid electrolyte interphase(SEI)severely impede the practical application of lithium metal batteries(LMBs).Herein,the N-Zn-F coordinated triazine-based covalent organic framework(TTA-COF-ZnF_(2))is fabricated for the first time as an artificial SEI layer on the surface of lithium metal anodes(LMAs)to handle these issues.Zn-N coordination in onedimensional(1D)ordered COF can increase lithiophilic sites,reduce the Li-nucleation barrier,and regulate the Li+local coordination environment by optimizing surface charge density around the Zn metal.The electron-rich state induced by strong electron-withdrawing F-groups constructs electronegative nanochannels,which trigger efficient Li+desolvation.These beneficial attributes boost Li^(+)transfer,and homogenize Li^(+)flux,leading to uniform Li deposition.Besides,the lithiophilic triazine ring polar groups in TTA-COF-ZnF_(2)further facilitate the Li^(+)migration.The latent working mechanism of adjusting Li deposition behaviors and stabilizing LMAs for TTA-COF-ZnF_(2)is illustrated by detailed in-situ/ex-situ characterizations and density functional theory(DFT)calculations.As expected,TTA-COF-ZnF_(2)-modified Li|Cu half cells deliver a higher Coulombic efficiency(CE)of 98.4% over 250 cycles and lower nucleation overpotential(11 mV)at 1 mA cm^(-2),while TTA-COF-ZnF_(2)@Li symmetric cells display a long lifespan over3785 h at 2 mA cm^(-2).The TTA-COF-ZnF_(2)@Li|S full cells exert ultra high capacity retention of 81%(837 mA h g^(-1))after 600 cycles at 1C.Besides,the TTA-COF-ZnF_(2)@Li|LFP full cells with a high loading of 7.1 mg cm^(-2)exert ultrahigh capacity retention of 89%(108 mAh g^(-1))after 700 cycles at 5C.This synergistic strategy in N-Zn-F coordinated triazine-based COF provides a new insight to regulate the uniform platins/stripping behaviors for developing ultra-stable and dendrite-free LMBs. 展开更多
关键词 Covalent organic framework N-Zn-F coordination Charge regulation Lithium metal anodes Dendrite-free
在线阅读 下载PDF
Synergetic regulation of bulk reconstruction and preferential orientation realizing long-lifespan thin Li anodes for high-energy-density lithium metal batteries
11
作者 Xu Chu Feilong Dong +2 位作者 Ying Jiang Qianmai Qiao Haiming Xie 《Journal of Energy Chemistry》 2025年第6期418-426,I0010,共10页
Li plating behavior of the Li metal anode and its compatibility with electrolytes play a decisive role in the electrochemical performance of the Li metal batteries(LMBs),while the intrinsic highly reactive Li would in... Li plating behavior of the Li metal anode and its compatibility with electrolytes play a decisive role in the electrochemical performance of the Li metal batteries(LMBs),while the intrinsic highly reactive Li would induce serious results especially under deep Li plating/stripping depth and with lean electrolytes.Herein,we propose an innovative strategy to simultaneously regulate the bulk construction and the preferential orientation of Li deposition by introducing Li22Sn5/Li-Mg alloys to realize ultra-stable thin Li anodes with long lifespan.The alloys can form a continuous framework with high lithiophilicity and fast ion-diffusion to enable homogenous Li flux,and meanwhile tune the preferential orientation of Li from the conventional(110)plane to(200)to lower the Li reactivity with electrolytes and optimize Li deposition.Therefore,the thin Li-Sn-Mg alloy anode showcases ultra-stable cycling without volume changes and dendrites under a deep Li plating/stripping depth of 89.1%(5 mAh cm^(-2))for over 1200 h in commercial carbonate electrolytes.Moreover,a multilayered NCM811pouch cell with a high energy density of403.6 Wh kg^(-1)is achieved under the harsh conditions of low N/P ratio(0.769)and lean electrolytes(~2.1 g Ah^(-1)).Synchronously,the thin alloy anode shows improved air stability which benefits the manufacturing process and performance of LMBs,displaying the great application potential of these alloy anodes. 展开更多
关键词 Li metal anodes Continuous alloy framework Preferential orientation Long lifespan High energy density
在线阅读 下载PDF
Spider web-inspired structural design for an energy-dissipating polymer binder enabling stabilized silicon anodes
12
作者 Xiangyu Lin Danna Ma +4 位作者 Ziming Zhu Shanshan Wang He Liu Xu Xu Zhaoshuang Li 《Journal of Energy Chemistry》 2025年第10期870-878,共9页
Silicon(Si)is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,its application is significantly limited by severe volume ... Silicon(Si)is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,its application is significantly limited by severe volume expansion,leading to structural degradation and poor cycling stability.Polymer binders play a critical role in addressing these issues by providing mechanical stabilization.Inspired by the mechanically adaptive architecture of spider webs,where stiff radial threads and extensible spiral threads act in synergy,a dual-thread architecture polymer binder(PALT)with energy dissipation ability enabled by integrating rigid and flexible domains is designed.The rigid poly(acrylic acid lithium)(PAALi)segments offer structural reinforcement,while the soft segments(poly(lipoic acid-tannic acid),LT)introduce dynamic covalent bonds and multiple hydrogen bonds that function as reversible sacrificial bonds,enhancing energy dissipation during cycling.Comprehensive experimental and computational analyses demonstrate effectively reduced stress concentration,improved structural integrity,and stable electrochemical performance over prolonged cycling.The silicon anode incorporating the PALT binder exhibits a satisfying capacity loss per cycle of 0.042% during 350 charge/discharge cycles at 3580 m A g^(-1).This work highlights a bioinspired binder design strategy that combines intrinsic rigidity with dynamic stress adaptability to advance the mechanical and electrochemical stability of silicon anodes. 展开更多
关键词 Polymer binder Lithium-ion batteries Silicon anodes Tannic acid
在线阅读 下载PDF
Research progress of modified metal current collectors in sodium metal anodes
13
作者 Zhenyang Yu Yueyue Gu +6 位作者 Qi Sun Yang Zheng Yifang Zhang Mengmeng Zhang Delin Zhang Zhijia Zhang Yong Jiang 《Chinese Chemical Letters》 2025年第6期195-207,共13页
Sodium metal has been widely studied in the field of batteries due to its high theoretical specific capacity(~1,166 m Ah/g),low redox potential(-2.71 V compared to standard hydrogen electrode),and lowcost advantages.H... Sodium metal has been widely studied in the field of batteries due to its high theoretical specific capacity(~1,166 m Ah/g),low redox potential(-2.71 V compared to standard hydrogen electrode),and lowcost advantages.However,problems such as unstable solid electrolyte interface(SEI),uncontrolled dendrite growth,and side reactions between solid-liquid interfaces have hindered the practical application of sodium metal anodes(SMAs).Currently,lots of strategies have been developed to achieve stabilized sodium metal anodes.Among these strategies,modified metal current collectors(MCCs)stand out due to their unique role in accommodating volumetric fluctuations with superior structure,lowering the energy barrier for sodium nucleation,and providing guided uniform sodium deposition.In this review,we first introduced three common metal-based current collectors applied to SMAs.Then,we summarized strategies to improve sodium deposition behavior by optimally engineering the surface of MCCs,including surface loading,surface structural design,and surface engineering for functional modification.We have followed the latest research progress and summarized surface optimization cases on different MCCs and their applications in battery systems. 展开更多
关键词 Sodium metal anodes Metal current collector Surface modification Surface structural design Anode-free batteries
原文传递
Realizing interfacial coupled electron/ion transport through reducing the interfacial oxygen density of carbon skeletons for high-performance lithium metal anodes
14
作者 Yao-Lu Ye Yan Zhou +1 位作者 Huan Ye Fei-Fei Cao 《Journal of Energy Chemistry》 2025年第2期744-750,I0016,共8页
Lithium plating/stripping occurs at the a node/electrolyte interface which involves the flow of electrons from the current collector and the migration of lithium ions from the solid-electrolyte interphase(SEI).The dua... Lithium plating/stripping occurs at the a node/electrolyte interface which involves the flow of electrons from the current collector and the migration of lithium ions from the solid-electrolyte interphase(SEI).The dual continuous rapid transport of interfacial electron/ion is required for homogeneous Li deposition.Herein,we propose a strategy to improve the Li metal anode performance by rationally regulating the interfacial electron density and Li ion transport through the SEI film.This key technique involves decreasing the interfacial oxygen density of biomass-derived carbon host by regulating the arrangement of the celluloses precursor fibrils.The higher specific surface area and lower interfacial oxygen density decrease the local current density and ensure the formation of thin and even SEI film,which stabilized Li^(+)transfer through the Li/electrolyte interface.Moreover,the improved graphitization and the interconnected conducting network enhance the surface electronegativity of carbon and enable uninterruptible electron conduction.The result is continuous and rapid coupled interfacial electron/ion transport at the anode/electrolyte reaction interface,which facilitates uniform Li deposition and improves Li anode performance.The Li/C anode shows a high initial Coulombic efficiency of 98%and a long-term lifespan of over 150cycles at a practical low N/P(negative-to-positive)ratio of 1.44 in full cells. 展开更多
关键词 Lithium metal batteries Lithium-lean metal anodes CELLULOSE Electron/ion conducting Interfacial oxygen density
在线阅读 下载PDF
Non-destructive analysis of lithium dynamics in metal foil anodes for anode-free batteries:Insights from distribution of relaxation times
15
作者 Qingyu Xie Lei Ma +9 位作者 Jiaxuan Liao Yi Wang Lichun Zhou Xiongbang Wei Ying Lin Zhi Chen Wenlong Liu Linnan Bi Qiang Zou Sizhe Wang 《Journal of Energy Chemistry》 2025年第9期703-712,I0019,共11页
Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current c... Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current collectors in anode-free batteries was addressed by using the non-destructive distribution of relaxation times(DRT)analysis to systematically investigate the lithium transport behavior of 14 metal foils and its correlation with electrochemical performance.By integrating energy-dispersive spectro scopy(EDS),cyclic voltammetry(CV),and galvanostatic testing,the exceptional properties of indium(In),tin(Sn),and silver(Ag)were revealed:the Li-In alloying reaction exhibits high reversibility,Li-Sn alloys demonstrate outstanding cycling stability,and the Li-Ag solid-solution mechanism provides an ideal lithium deposition interface on the silver substrate.The DRT separates the polarization internal resistance of lithium ions passing through the SEI layer(R_(sei),τ2)and the polarization internal resistance of lithium ions undergoing charge transfer reaction at the electrolyte/electrode interface(R_(ct),τ3)by decoupling the electrochemical impedance spectroscopy(EIS).For the first time,the correlation betweenτ2,τ3,and the cycle life/Coulombic efficiency of alloy/solid-solution metals was established,while non-alloy metals are not suitable for this method due to differences in lithium deposition mechanisms.This study not only illuminates the structure-property relationship governing the lithium kinetics of metal foil electrodes but also provides a novel non-destructive analytical strategy and theoretical guidance for the rational design of stable anodes in high-energy-density batteries,facilitating the efficient screening and optimization of anode-free battery. 展开更多
关键词 Metal foil anodes Anode-free batteries Distribution of relaxation times Non-destructive analysis Lithium kinetics process
在线阅读 下载PDF
In-situ bond-assisted aqueous binder for enhancing sodium storage in ionic conductor-modified black phosphorus/carbon anodes
16
作者 Bo Yan Longfeng Chen +6 位作者 Yanping Li Hui Ma Wei Xiao Meihua Zhong Lulu Zhang Xuelin Yang Xifei Li 《Journal of Energy Chemistry》 2025年第4期188-199,共12页
Black phosphorus(BP)is recognized as a promising anode for sodium-ion batteries(SIBs)due to its high safety and theoretical capacity.However,traditional ball milling methodologies for fabricating BP composite anodes h... Black phosphorus(BP)is recognized as a promising anode for sodium-ion batteries(SIBs)due to its high safety and theoretical capacity.However,traditional ball milling methodologies for fabricating BP composite anodes have not satisfactorily addressed the challenges of poor rate performance and short cycle life.To fill this scientific gap,we herein pioneer incorporating the sodium fast ionic conductorβ"-Al_(2)O_(3)into ball-milled BP with carbon,which facilitates the formation of three-dimensional mass transfer channels in the resulting composite.To stabilize these channels,we develop a novel and environmentally friendly functional binder that outperforms traditional binders in thermal stability,wettability,and mechanical properties.The newly established binder is capable of remarkably mitigating volume expansion and interfacial side reactions in the BP/β"-Al_(2)O_(3)/C composite anode.Additionally,we identify synergistic effects of the binder interacting with the BP/β"-Al_(2)O_(3)/C composite during cycling,characterized by the in-situ formation of P-O-C bonds,which is the first instance of a strong,durable chemical bond between the binder and the active material to the best of our knowledge.These advancements allow the composite electrode to exhibit exceptional sodium storage,including high initial Coulombic efficiency and long-term cycling stability,which surpasses most previous phosphorus-based anodes fabricated via traditional approaches.Notably,when paired with a Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_7(NFPP)cathode,the full cell exhibits unexpectedly high energy and power densities,highlighting the BP potential in SIBs.The findings presented in the present work contribute to the promotion of economical and efficient applications of phosphorus-based anode materials. 展开更多
关键词 Black phosphorus anodes Fast ionic conductors Aqueous functional binders In-situ chemical bonds Sodium storage properties
在线阅读 下载PDF
Metallized polymer current collector as“stress acceptor”for stable micron-sized silicon anodes
17
作者 Ziyi Cao Haoteng Sun +7 位作者 Yi Zhang Lixia Yuan Yaqi Liao Haijin Ji Shuaipeng Hao Zhen Li Long Qie Yunhui Huang 《Journal of Energy Chemistry》 2025年第2期786-794,I0017,共10页
Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cyclin... Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cycling leads to the accumulation of undesirable stresses,resulting in pulverization of silicon microparticles and shortened lifespan of the batteries.Herein,a composite film of Cu-PET-Cu is proposed as the current collector(CC)forμSi anodes to replace the conventional Cu CC.Cu-PET-Cu CC is prepared by depositing Cu on both sides of a polyethylene terephthalate(PET)film.The PET layer promises good ductility of the film,permitting the Cu-PET-Cu CC to accommodate the volumetric changes of silicon microparticles and facilitates the stress release through ductile deformation.As a result,theμSi electrode with Cu-PET-Cu CC retains a high specific capacity of 2181 mA h g^(-1),whereas theμSi electrode with Cu CC(μSi/Cu)exhibits a specific capacity of 1285 mA h g^(-1)after 80 cycles.The stress relieving effect of CuPET-Cu was demonstrated by in-situ fiber optic stress monitoring and multi-physics simulations.This work proposes an effective stress relief strategy at the electrode level for the practical implementation ofμSi anodes. 展开更多
关键词 Micron-sized Si anodes Metallized polymer current collector Stress relieving Electrode design
在线阅读 下载PDF
A Mechanically Robust In-Situ Solidified Polymer Electrolyte for SiO_(x)-Based Anodes Toward High-Energy Lithium Batteries
18
作者 Cizhen Luo Huanrui Zhang +8 位作者 Chenghao Sun Xing Chen Wenjun Zhang Pengzhou Mu Gaojie Xu Rongxian Wu Zhaolin Lv Xinhong Zhou Guanglei Cui 《Nano-Micro Letters》 2025年第10期509-524,共16页
Silicon suboxide(SiO_(x),0<x<2)is an appealing anode material to replace traditional graphite owing to its much higher theoretical specific capacity enabling higher-energy-density lithium batteries.Nevertheless,... Silicon suboxide(SiO_(x),0<x<2)is an appealing anode material to replace traditional graphite owing to its much higher theoretical specific capacity enabling higher-energy-density lithium batteries.Nevertheless,the huge volume change and rapid capacity decay of SiO_(x)electrodes during cycling pose huge challenges to their large-scale practical applications.To eliminate this bottleneck,a dragonfly wing microstructure-inspired polymer electrolyte(denoted as PPM-PE)is developed based on in-situ polymerization of bicyclic phosphate ester-and urethane motif-containing monomer and methyl methacrylate in traditional liquid electrolyte.PPM-PE delivers excellent mechanical properties,highly correlated with the formation of a micro-phase separation structure similar with dragonfly wings.By virtue of superior mechanical properties and the in-situ solidified preparation method,PPM-PE can form a 3D polymer network buffer against stress within the electrode particles gap,enabling much suppressed electrode volume expansion and more stabilized solid electrolyte interface along with evidently decreased electrolyte decomposition.Resultantly,PPM-PE shows significant improvements in both cycling and rate performance in button and soft package batteries with SiO_(x)-based electrodes,compared with the liquid electrolyte counterpart.Such a dragonfly wing microstructure-inspired design philosophy of in-situ solidified polymer electrolytes helps facilitate the practical implementation of high-energy lithium batteries with SiO_(x)-based anodes. 展开更多
关键词 High-energy lithium batteries SiO_(x)-based anodes Polymer electrolyte Micro-phase separation structure Cycle performance
在线阅读 下载PDF
Superior specific capacity and energy density simultaneously achieved by Sr/In co-deposition behavior of Mg-Sr-In ternary alloys as anodes for Mg-Air cells 被引量:1
19
作者 Bowen Yu Haitao Jiang Yun Zhang 《Journal of Magnesium and Alloys》 2025年第2期640-653,共14页
In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid... In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid solution atoms in theα-Mg matrix without its second-phase generation,and at the same time facilitates grain refinement,dendritic segregation and Mg17Sr2-phases precipitation.During discharge operation,Sr modifies the film composition via its compounds and promoted the redeposition of In at the substrate/film interface;their co-deposition behavior on the anodic reaction surface enhances anode reaction kinetics,suppresses the negative difference effect(NDE)and mitigates the“chunk effect”(CE),which is contributed to uniform dissolution and low self-corrosion hydrogen evolution rate(HER).Therefore,Mg-Sr-xIn alloy anodes show excellent discharge performance,e.g.,0.5Sr-1.0In shows an average discharge voltage of 1.4234 V and a specific energy density of 1990.71 Wh kg^(-1)at 10 mA cm^(-2).Furthermore,the decisive factor(CE and self-discharge HE)for anodic efficiency are quantitively analyzed,the self-discharge is the main factor of cell efficiency loss.Surprisingly,all Mg-Sr-xIn anodes show anodic efficiency greater than 60%at high current density(≥10 mA cm^(-2)),making them excellent candidate anodes for Mg-Air cells at high-power output. 展开更多
关键词 Mg-air cells CO-DEPOSITION Anode/electrolyte interface Anodic efficiency Discharge performance
在线阅读 下载PDF
Zincophilic Cu/flexible polymer heterogeneous interfaces ensuring the stability of zinc metal anodes 被引量:1
20
作者 Luyang Sun Wenjia Zhang +4 位作者 Qiongqiong Lu Pengfei Yue Guoshang Zhang Kexing Song Yanqing Su 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1719-1729,共11页
Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side react... Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side reactions during zinc plating or stripping greatly reduce the capacity and cycle life of a battery and subsequently limit its practical application.To address these issues,we modified the surface of a zinc anode with a functional bilayer composed of zincophilic Cu and flexible polymer layers.The zincophilic Cu interfacial layer was prepared through CuSO_(4)solution pretreatment to serve as a nucleation site to facilitate uniform Zn deposition.Meanwhile,the polymer layer was coated onto the Cu interface layer to serve as a protective layer that would prevent side reactions between zinc and electrolytes.Benefiting from the synergistic effect of the zincophilic Cu and protective polymer layers,the symmetric battery exhibits an impressive cycle life,lasting over 2900 h at a current density of 1 m A·cm^(-2)with a capacity of 1 m A·h·cm^(-2).Moreover,a full battery paired with a vanadium oxide cathode achieves a remarkable capacity retention of 72%even after 500 cycles. 展开更多
关键词 aqueous zinc-ion batteries zinc metal anode zincophilic Cu polymer protective layer DENDRITE
在线阅读 下载PDF
上一页 1 2 142 下一页 到第
使用帮助 返回顶部