The spectroscopic properties and angular momentum geometry of the wobbling motion of a simple triaxial rotor are investigated within the triaxial rotor model. The obtained exact solutions of energy spectra and reduced...The spectroscopic properties and angular momentum geometry of the wobbling motion of a simple triaxial rotor are investigated within the triaxial rotor model. The obtained exact solutions of energy spectra and reduced quadrupole transition probabilities are compared to the approximate analytic solutions from the harmonic approximation formula and Holstein-Primakoff formula. It is found that the low lying wobbling bands can be well described by the analytic formulae. The evolution of the angular momentum geometry as well as the K-distribution with respect to the rotation and the wobbling phonon excitation are studied in detail. It is demonstrated that with the increase of the wobbling phonon number, the triaxial rotor changes its wobbling motions along the axis with the largest moment of inertia to the axis with the smallest moment of inertia. In this process, a specific evolutionary track that can be used to depict the motion of a triaxial rotating nucleus is proposed.展开更多
基金Supported by President’s Undergraduate Research Fellowship(PURF),Peking University,Major State 973 Program of China(2013CB834400)National Natural Science Foundation of China(11175002,11335002,11375015,11345004,11461141002)+1 种基金National Fund for Fostering Talents of Basic Science(NFFTBS)(J1103206)Research Fund for the Doctoral Program of Higher Education(20110001110087)
文摘The spectroscopic properties and angular momentum geometry of the wobbling motion of a simple triaxial rotor are investigated within the triaxial rotor model. The obtained exact solutions of energy spectra and reduced quadrupole transition probabilities are compared to the approximate analytic solutions from the harmonic approximation formula and Holstein-Primakoff formula. It is found that the low lying wobbling bands can be well described by the analytic formulae. The evolution of the angular momentum geometry as well as the K-distribution with respect to the rotation and the wobbling phonon excitation are studied in detail. It is demonstrated that with the increase of the wobbling phonon number, the triaxial rotor changes its wobbling motions along the axis with the largest moment of inertia to the axis with the smallest moment of inertia. In this process, a specific evolutionary track that can be used to depict the motion of a triaxial rotating nucleus is proposed.