In this article, we deal with the uniqueness problems on meromorphic functions sharing two finite sets in an angular domain instead of the whole plane C. In particular, we investigate the uniqueness for meromorphic fu...In this article, we deal with the uniqueness problems on meromorphic functions sharing two finite sets in an angular domain instead of the whole plane C. In particular, we investigate the uniqueness for meromorphic functions of infinite order in an angular domain and obtain some results. Moreover, examples show that the conditions in theorems are necessary.展开更多
In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article i...In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].展开更多
In computer aided geometric design (CAGD), B′ezier-like bases receive more andmore considerations as new modeling tools in recent years. But those existing B′ezier-like basesare all defined over the rectangular do...In computer aided geometric design (CAGD), B′ezier-like bases receive more andmore considerations as new modeling tools in recent years. But those existing B′ezier-like basesare all defined over the rectangular domain. In this paper, we extend the algebraic trigono-metric B′ezier-like basis of order 4 to the triangular domain. The new basis functions definedover the triangular domain are proved to fulfill non-negativity, partition of unity, symmetry,boundary representation, linear independence and so on. We also prove some properties of thecorresponding B′ezier-like surfaces. Finally, some applications of the proposed basis are shown.展开更多
We investigate the angular-dependent multi-mode resonance frequencies in CoZr magnetic thin films with a rotatable stripe domain structure.A variable range of multi-mode resonance frequencies from 1.86 GHz to 4.80 GHz...We investigate the angular-dependent multi-mode resonance frequencies in CoZr magnetic thin films with a rotatable stripe domain structure.A variable range of multi-mode resonance frequencies from 1.86 GHz to 4.80 GHz is achieved by pre-magnetizing the CoZr films along different azimuth directions,which can be ascribed to the competition between the uniaxial anisotropy caused by the oblique deposition and the rotatable anisotropy induced by the rotatable stripe domain.Furthermore,the regulating range of resonance frequency for the CoZr film can be adjusted by changing the oblique deposition angle.Our results might be beneficial for the applications of magnetic thin films in microwave devices.展开更多
In this paper, a new analytical method of symplectic system, Hamiltonian system, is introduced for solving the problem of the Stokes flow in a two-dimensional rectangular domain. In the system, the fundamental problem...In this paper, a new analytical method of symplectic system, Hamiltonian system, is introduced for solving the problem of the Stokes flow in a two-dimensional rectangular domain. In the system, the fundamental problem is reduced to an eigenvalue and eigensolution problem. The solution and boundary conditions can be expanded by eigensolutions using adjoint relationships of the symplectic ortho-normalization between the eigensolutions. A closed method of the symplectic eigensolution is presented based on completeness of the symplectic eigensolution space. The results show that fundamental flows can be described by zero eigenvalue eigensolutions, and local effects by nonzero eigenvalue eigensolutions. Numerical examples give various flows in a rectangular domain and show effectiveness of the method for solving a variety of problems. Meanwhile, the method can be used in solving other problems.展开更多
Rectangular reflector antennas have motivated the time-domain analysis of electromagnetic scattering problems. The asymptotic time domain physical-optics (TDPO) is applied to the analysis of a rectangular reflector il...Rectangular reflector antennas have motivated the time-domain analysis of electromagnetic scattering problems. The asymptotic time domain physical-optics (TDPO) is applied to the analysis of a rectangular reflector illuminated by a Gaussian-impulse. The effects of time-delayed mutual coupling between points on the surface will be ignored as a result of utilizing the TDPO method for determining the equivalent surface-current density on the reflector. Finally, in this work the scattered signals at the specular reflection point, at the edges, and at the corners can be clearly distinguished.展开更多
In order to increase the capacity of encrypted information and reduce the loss of information transmission, a three-dimensional(3 D) scene encryption algorithm based on the phase iteration of the angular spectrum doma...In order to increase the capacity of encrypted information and reduce the loss of information transmission, a three-dimensional(3 D) scene encryption algorithm based on the phase iteration of the angular spectrum domain is proposed in this paper. The algorithm, which adopts the layer-oriented method, generates the computer generated hologram by encoding the three-dimensional scene. Then the computer generated hologram is encoded into three pure phase functions by adopting the phase iterative algorithm based on angular spectrum domain,and the encryption process is completed. The three-dimensional scene encryption can improve the capacity of the information,and the three-phase iterative algorithm can guarantee the security of the encryption information. The numerical simulation results show that the algorithm proposed in this paper realized the encryption and decryption of three-dimensional scenes. At the same time, it can ensure the safety of the encrypted information and increase the capacity of the encrypted information.展开更多
Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors....Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors. In this study, two indices based on the information entropy are proposed to evaluate the EC energyallocated in different directions. The EC vectors induced by a rotational field EC sensor varying in the timedomain are evaluated by the proposed methods. Then, the evaluating results are analyzed by the principle ofEC testing. It can be concluded that the two indices can effectively quantitatively evaluate the EC distributionsvarying in the time domain and are used to optimize the parameters of the rotational EC sensors.展开更多
Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properti...Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.展开更多
To investigate the effect of microstructure evolution on corrosion behavior and strengthening mechanism of Mg-1Zn-1Ca(wt.%)alloys,as-cast Mg-1Zn-1Ca alloys were performed by equal channel angular pressing(ECAP)with 1 ...To investigate the effect of microstructure evolution on corrosion behavior and strengthening mechanism of Mg-1Zn-1Ca(wt.%)alloys,as-cast Mg-1Zn-1Ca alloys were performed by equal channel angular pressing(ECAP)with 1 and 4 passes.The corrosion behavior and mechanical properties of alloys were investigated by optical microscopy(OM),scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),electrochemical tests,immersion tests and tensile tests.The results showed that mechanical properties improved after ECAP 1 pass;however,the corrosion resistance deteriorated due to high-density dislocations and fragmented secondary phases by ECAP.In contrast,synchronous improvement in the mechanical properties and corrosion resistance was achieved though grain refinement after ECAP 4 passes;fine grains led to a significant improvement in the yield strength,ultimate tensile strength,elongation,and corrosion rate of 103 MPa,223 MPa,30.5%,and 1.5843 mm/a,respectively.The enhanced corrosion resistance was attributed to the formation of dense corrosion product films by finer grains and the barrier effect by high-density grain boundaries.These results indicated that Mg-1Zn-1Ca alloy has a promising potential for application in biomedical materials.展开更多
By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integra...By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integral. The effect of noncanonical strength, off-axis distance and vortex sign on spatial correlation singularities in far field is stressed. Furthermore, far-field OAM spectra and densities are also investigated, and the OAM detection and crosstalk probabilities are discussed. The results show that the number of dislocations of SCS always equals the sum of absolute values of topological charges for canonical or noncanonical vortex pairs. Although the sum of the product of each OAM mode and its power weight equals the algebraic sum of topological charges for canonical vortex pairs, the relationship no longer holds in the noncanonical case except for opposite-charge vortex pairs. The changes of off-axis distance, noncanonical strength or coherence length can lead to a more dominant power in adjacent mode than that in center detection mode, which also indicates that crosstalk probabilities of adjacent modes exceed the center detection probability. This work may provide potential applications in OAM-based optical communication, imaging, sensing and computing.展开更多
A parametrization of density matrices of ddimensions in terms of the raising J+and lowering J−angular momentum operators is established together with an implicit connection with the generalized Bloch-GellMann paramete...A parametrization of density matrices of ddimensions in terms of the raising J+and lowering J−angular momentum operators is established together with an implicit connection with the generalized Bloch-GellMann parameters. A general expression for the density matrix of the composite system of angular momenta j1and j2is obtained. In this matrix representation violations of the Bell-Clauser-Horne-Shimony-Holt inequalities are established for the X-states of a qubit-qubit, pure and mixed, composite system, as well as for a qubit-qutrit density matrix. In both cases maximal violation of the Bell inequalities can be reached, i.e., the Cirel’son limit. A correlation between the entanglement measure and a strong violation of the Bell factor is also given. For the qubit-qutrit composite system a time-dependent convex combination of the density matrix of the eigenstates of a two-particle Hamiltonian system is used to determine periodic maximal violations of the Bell’s inequality.展开更多
In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval...In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.展开更多
In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequen...In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.展开更多
The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to b...The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.展开更多
Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoe...Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.展开更多
We predict high-velocity magnetic domain wall(DW)motion driven by out-of-plane acoustic spin in surface acoustic waves(SAWs).We demonstrate that the SAW propagating at a 30-degree angle relative to the x-axis of a 128...We predict high-velocity magnetic domain wall(DW)motion driven by out-of-plane acoustic spin in surface acoustic waves(SAWs).We demonstrate that the SAW propagating at a 30-degree angle relative to the x-axis of a 128∘Y-LiNbO_(3) substrate exhibits uniform out-of-plane spin angular momentum.This acoustic spin triggers the DW motion at a velocity exceeding 50 m/s in a way that is similar to the spin-transfer-torque effect.This phenomenon highlights the potential of acoustic spin in enabling rapid DW displacement,offering an innovative approach to developing energy-efficient spintronic devices.展开更多
To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions...To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions in the form of noise and artifacts,are kept to a bare minimum.The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality,while indirectly attacking the effectiveness of the diagnostic process.It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise.The solution to these challenges presents a complex dilemma at the acquisition stage,where image processing techniques must be adopted.The necessity of this mandatory image pre-processing step underpins the implementation of traditional state-of-the-art methods to create functional and robust denoising or recovery devices.This article hereby provides an extensive systematic review of the above techniques,with the purpose of presenting a systematic evaluation of their effect on medical images under three different distributions of noise,i.e.,Gaussian,Poisson,and Rician.A thorough analysis of these methods is conducted using eight evaluation parameters to highlight the unique features of each method.The covered denoising methods are essential in actual clinical scenarios where the preservation of anatomical details is crucial for accurate and safe diagnosis,such as tumor detection in MRI and vascular imaging in CT.展开更多
基金Supported by the NNSFC (10671109)the NSFFC(2008J0190)+1 种基金the Research Fund for Talent Introduction of Ningde Teachers College (2009Y019)the Scitific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘In this article, we deal with the uniqueness problems on meromorphic functions sharing two finite sets in an angular domain instead of the whole plane C. In particular, we investigate the uniqueness for meromorphic functions of infinite order in an angular domain and obtain some results. Moreover, examples show that the conditions in theorems are necessary.
基金supported by the NSFC(11171184)the NSF of Shandong Province,China(Z2008A01)
文摘In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].
基金Supported by the National Natural Science Foundation of China( 60933008,60970079)
文摘In computer aided geometric design (CAGD), B′ezier-like bases receive more andmore considerations as new modeling tools in recent years. But those existing B′ezier-like basesare all defined over the rectangular domain. In this paper, we extend the algebraic trigono-metric B′ezier-like basis of order 4 to the triangular domain. The new basis functions definedover the triangular domain are proved to fulfill non-negativity, partition of unity, symmetry,boundary representation, linear independence and so on. We also prove some properties of thecorresponding B′ezier-like surfaces. Finally, some applications of the proposed basis are shown.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51871117 and 51671099)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT-16R35)the Gansu Provincial Science Foundation for Distinguished Young Scholars,China(Grant No.20JR10RA649).
文摘We investigate the angular-dependent multi-mode resonance frequencies in CoZr magnetic thin films with a rotatable stripe domain structure.A variable range of multi-mode resonance frequencies from 1.86 GHz to 4.80 GHz is achieved by pre-magnetizing the CoZr films along different azimuth directions,which can be ascribed to the competition between the uniaxial anisotropy caused by the oblique deposition and the rotatable anisotropy induced by the rotatable stripe domain.Furthermore,the regulating range of resonance frequency for the CoZr film can be adjusted by changing the oblique deposition angle.Our results might be beneficial for the applications of magnetic thin films in microwave devices.
文摘In this paper, a new analytical method of symplectic system, Hamiltonian system, is introduced for solving the problem of the Stokes flow in a two-dimensional rectangular domain. In the system, the fundamental problem is reduced to an eigenvalue and eigensolution problem. The solution and boundary conditions can be expanded by eigensolutions using adjoint relationships of the symplectic ortho-normalization between the eigensolutions. A closed method of the symplectic eigensolution is presented based on completeness of the symplectic eigensolution space. The results show that fundamental flows can be described by zero eigenvalue eigensolutions, and local effects by nonzero eigenvalue eigensolutions. Numerical examples give various flows in a rectangular domain and show effectiveness of the method for solving a variety of problems. Meanwhile, the method can be used in solving other problems.
文摘Rectangular reflector antennas have motivated the time-domain analysis of electromagnetic scattering problems. The asymptotic time domain physical-optics (TDPO) is applied to the analysis of a rectangular reflector illuminated by a Gaussian-impulse. The effects of time-delayed mutual coupling between points on the surface will be ignored as a result of utilizing the TDPO method for determining the equivalent surface-current density on the reflector. Finally, in this work the scattered signals at the specular reflection point, at the edges, and at the corners can be clearly distinguished.
基金supported by the Natural Science ResearchProject of the Colleges and Universities of Anhui Province(KJ2016A056)Natural Science Foundation of Anhui Province of China(1508085MF121)National Natural Science Foundation of China(61572032)。
文摘In order to increase the capacity of encrypted information and reduce the loss of information transmission, a three-dimensional(3 D) scene encryption algorithm based on the phase iteration of the angular spectrum domain is proposed in this paper. The algorithm, which adopts the layer-oriented method, generates the computer generated hologram by encoding the three-dimensional scene. Then the computer generated hologram is encoded into three pure phase functions by adopting the phase iterative algorithm based on angular spectrum domain,and the encryption process is completed. The three-dimensional scene encryption can improve the capacity of the information,and the three-phase iterative algorithm can guarantee the security of the encryption information. The numerical simulation results show that the algorithm proposed in this paper realized the encryption and decryption of three-dimensional scenes. At the same time, it can ensure the safety of the encrypted information and increase the capacity of the encrypted information.
基金Foundation item:the National Natural Science Foundation of China(No.51807086)the Young Doctoral Fund of Education Department of Gansu Province(No.2021QB-047)the Hongliu Youth Fund of Lanzhou University of Technology(No.07/062003)。
文摘Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors. In this study, two indices based on the information entropy are proposed to evaluate the EC energyallocated in different directions. The EC vectors induced by a rotational field EC sensor varying in the timedomain are evaluated by the proposed methods. Then, the evaluating results are analyzed by the principle ofEC testing. It can be concluded that the two indices can effectively quantitatively evaluate the EC distributionsvarying in the time domain and are used to optimize the parameters of the rotational EC sensors.
基金supported by the Australian Research Council Centre of Excellence in Optical Microcombs for Breakthrough Science COMBS(CE230100006)the Australian Research Council grants DP220100488 and DE230100964funded by the Australian Government.
文摘Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.
基金financially supported by the National Natural Science Foundation of China(No.52374395)the Natural Science Foundation of Shanxi Province,China(Nos.20210302123135,202303021221143)+5 种基金the Scientific and Technological Achievements Transformation Guidance Special Project of Shanxi Province,China(Nos.202104021301022,202204021301009)the Central Government Guided Local Science and Technology Development Projects,China(No.YDZJSX20231B003)the Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant(No.075-15-2022-1133)the National Research Foundation(NRF)grant funded by the Ministry of Science and ICT of Korea through the Research Institute of Advanced Materials(No.2015R1A2A1A01006795)the China Postdoctoral Science Foundation(No.2022M710541)the Research Project supported by Shanxi Scholarship Council of China(No.2022-038)。
文摘To investigate the effect of microstructure evolution on corrosion behavior and strengthening mechanism of Mg-1Zn-1Ca(wt.%)alloys,as-cast Mg-1Zn-1Ca alloys were performed by equal channel angular pressing(ECAP)with 1 and 4 passes.The corrosion behavior and mechanical properties of alloys were investigated by optical microscopy(OM),scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),electrochemical tests,immersion tests and tensile tests.The results showed that mechanical properties improved after ECAP 1 pass;however,the corrosion resistance deteriorated due to high-density dislocations and fragmented secondary phases by ECAP.In contrast,synchronous improvement in the mechanical properties and corrosion resistance was achieved though grain refinement after ECAP 4 passes;fine grains led to a significant improvement in the yield strength,ultimate tensile strength,elongation,and corrosion rate of 103 MPa,223 MPa,30.5%,and 1.5843 mm/a,respectively.The enhanced corrosion resistance was attributed to the formation of dense corrosion product films by finer grains and the barrier effect by high-density grain boundaries.These results indicated that Mg-1Zn-1Ca alloy has a promising potential for application in biomedical materials.
文摘By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integral. The effect of noncanonical strength, off-axis distance and vortex sign on spatial correlation singularities in far field is stressed. Furthermore, far-field OAM spectra and densities are also investigated, and the OAM detection and crosstalk probabilities are discussed. The results show that the number of dislocations of SCS always equals the sum of absolute values of topological charges for canonical or noncanonical vortex pairs. Although the sum of the product of each OAM mode and its power weight equals the algebraic sum of topological charges for canonical vortex pairs, the relationship no longer holds in the noncanonical case except for opposite-charge vortex pairs. The changes of off-axis distance, noncanonical strength or coherence length can lead to a more dominant power in adjacent mode than that in center detection mode, which also indicates that crosstalk probabilities of adjacent modes exceed the center detection probability. This work may provide potential applications in OAM-based optical communication, imaging, sensing and computing.
文摘A parametrization of density matrices of ddimensions in terms of the raising J+and lowering J−angular momentum operators is established together with an implicit connection with the generalized Bloch-GellMann parameters. A general expression for the density matrix of the composite system of angular momenta j1and j2is obtained. In this matrix representation violations of the Bell-Clauser-Horne-Shimony-Holt inequalities are established for the X-states of a qubit-qubit, pure and mixed, composite system, as well as for a qubit-qutrit density matrix. In both cases maximal violation of the Bell inequalities can be reached, i.e., the Cirel’son limit. A correlation between the entanglement measure and a strong violation of the Bell factor is also given. For the qubit-qutrit composite system a time-dependent convex combination of the density matrix of the eigenstates of a two-particle Hamiltonian system is used to determine periodic maximal violations of the Bell’s inequality.
基金Supported by NSFC (No.12361027)NSF of Inner Mongolia (No.2018MS01021)+1 种基金NSF of Shandong Province (No.ZR2020QA009)Science and Technology Innovation Program for Higher Education Institutions of Shanxi Province (No.2024L533)。
文摘In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.
基金Supported by the National Natural Science Foundation of China(12301101)the Guangdong Basic and Applied Basic Research Foundation(2022A1515110019 and 2020A1515110585)。
文摘In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.
基金supported by the TARCC,Welch Foundation Award(I-1724)the Decherd Foundationthe Pape Adams Foundation,NIH grants NS092616,NS127375,NS117065,NS111776。
文摘The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.
基金National Natural Science Foundation of China (52202139, 52072178)。
文摘Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0103300)the open research fund of Songshan Lake Materials Laboratory(Grant No.2023SLABFN26)the Natural Science Foundation of Hubei Province(Grant No.2022CFA088)。
文摘We predict high-velocity magnetic domain wall(DW)motion driven by out-of-plane acoustic spin in surface acoustic waves(SAWs).We demonstrate that the SAW propagating at a 30-degree angle relative to the x-axis of a 128∘Y-LiNbO_(3) substrate exhibits uniform out-of-plane spin angular momentum.This acoustic spin triggers the DW motion at a velocity exceeding 50 m/s in a way that is similar to the spin-transfer-torque effect.This phenomenon highlights the potential of acoustic spin in enabling rapid DW displacement,offering an innovative approach to developing energy-efficient spintronic devices.
文摘To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions in the form of noise and artifacts,are kept to a bare minimum.The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality,while indirectly attacking the effectiveness of the diagnostic process.It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise.The solution to these challenges presents a complex dilemma at the acquisition stage,where image processing techniques must be adopted.The necessity of this mandatory image pre-processing step underpins the implementation of traditional state-of-the-art methods to create functional and robust denoising or recovery devices.This article hereby provides an extensive systematic review of the above techniques,with the purpose of presenting a systematic evaluation of their effect on medical images under three different distributions of noise,i.e.,Gaussian,Poisson,and Rician.A thorough analysis of these methods is conducted using eight evaluation parameters to highlight the unique features of each method.The covered denoising methods are essential in actual clinical scenarios where the preservation of anatomical details is crucial for accurate and safe diagnosis,such as tumor detection in MRI and vascular imaging in CT.