Installing internal bulkheads in a composite bucket foundation alters the rotational symmetry characteristic of a single-compartment bucket foundation,consequently influencing the stress distribution within the bucket...Installing internal bulkheads in a composite bucket foundation alters the rotational symmetry characteristic of a single-compartment bucket foundation,consequently influencing the stress distribution within the bucket and surrounding soil.During the seabed penetration of a spudcan from a jack-up wind turbine installation vessel,an angle may form between the spudcan’s axis and the axis of symmetry of the adjacent composite bucket foundation in the horizontal plane.Such a misalignment may affect load distribution and the non-uniform interaction between the foundation,soil,and spudcan,ultimately influencing the foundation’s stability.This study employs physical model tests to ascertain the trends in end resistance during spudcan penetration in sand,the extent of soil disturbance,and the backflow condition.The finite element coupled Eulerian-Lagrangian method is validated and utilized to determine the range of penetration angles that induce alterations in the maximum vertical displacement and tilt rate of the composite bucket foundation in sand.The differential contact stress distribution at the base of the bucket is analyzed,with qualitative criteria for sand backflow provided.Findings demonstrate that the maximum vertical displacement and tilt rate of the composite bucket foundation display a“wave-like”variation with the increasing spudcan penetration angle,peaking when the angle between the spudcan and bulkhead is the smallest.Stress distribution is predominantly concentrated at the base and apex of the bucket,becoming increasingly uneven as the penetration angle deviates from the foundation’s symmetry axis.The maximum stress gradually shifts to the junction of the bulkhead and bucket bottom on the side with the shortest net distance from the spudcan.Considering the in-place stability and stress state of the composite bucket foundation is therefore imperative,and particular attention should be paid to the foundation’s state when the angle between the spudcan and bulkhead is small.展开更多
AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longit...AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longitudinal observational study,detailed medical histories of APAC patients and comprehensive ophthalmic examinations at final followup were collected.Logistic regression analysis was performed to identify predictors of blindness.Univariate and multivariate linear regression analyses were conducted to determine risk factors associated with visual outcomes.RESULTS:This study included 39 affected eyes of 31 subjects(26 females)with an average age of 74.1±8.0y.At 6.7±4.2y after APAC attack,2(5.7%)eyes had bestcorrected visual acuity(VA)worse than 3/60.Advanced glaucomatous visual field loss was observed in 15(39.5%)affected eyes and 5(25.0%)fellow eyes.Nine affected eyes(23.7%)had GON,and 11(28.9%)were blind.Six(15.4%)affected eyes and 2(9.1%)fellow eyes had suspicious progression.A significantly higher blindness rate in factory workers compared to office workers.Logistic regression identified that worse VA at attack(OR 10.568,95%CI 1.288-86.695;P=0.028)and worse early postoperative VA(OR 13.214,95%CI 1.157-150.881;P=0.038)were risk factors for blindness.Multivariate regression showed that longer duration of elevated intraocular pressure(P=0.004)and worse early postoperative VA(P=0.009)were associated with worse visual outcomes.CONCLUSION:Despite LE surgery,some APAC patients experience continued visual function deterioration.Lifelong monitoring is necessary.Target pressure and progression rates should be re-evaluated during follow-up.展开更多
AIM:To study the relationships between amplitude of low-frequency fluctuations(ALFF)changes and clinical ophthalmic parameters in patients with primary open angle glaucoma(POAG)and analyze the diagnostic value of ALFF...AIM:To study the relationships between amplitude of low-frequency fluctuations(ALFF)changes and clinical ophthalmic parameters in patients with primary open angle glaucoma(POAG)and analyze the diagnostic value of ALFF.METHODS:Twenty-four POAG patients and 24 healthy controls(HCs)underwent resting-state functional magnetic resonance imaging(rs-fMRI).Nonparametric rank-sum tests were used to compare the ALFF values in the slow-4 and slow-5 bands,and Spearman or Pearson correlation analysis was used to assess the correlation between ALFF changes and clinical ophthalmic parameters in POAG patients.Receiver operating characteristic(ROC)curves were used to evaluate the diagnostic performance of the ALFF.RESULTS:There were 16 males in POAG patients(median age 48y)and 12 males in HCs(median age 39y).Compared with HCs,POAG patients presented increased or decreased ALFF values in different brain regions,and similar changes were observed in mild POAG patients.The ALFF values were correlated with retinal nerve fiber layer(RNFL)thickness,inner limiting membrane-retinal pigment epithelium thickness changes and the degree of visual field defects.Analysis of the diagnostic value of the ALFF via ROC curves revealed that the right medial frontal gyrus[area under the curve(AUC)=0.9063]and superior frontal gyrus(AUC=0.9097)had better diagnostic value than did the optic disc area(AUC=0.8019),visual field index(VFI%,AUC=0.8988)and macular parameters.CONCLUSION:POAG patients present altered cortical function that is significantly correlated with the optic nerve and retinal thickness and had good diagnostic value,which may reflect the underlying neuropathological mechanism of POAG.展开更多
AIM:To investigate how angles kappa and alpha affect postoperative visual quality in patients with multifocal intraocular lens(mIOLs)implantation.METHODS:Retrospective cases series.A total of 46 patients(46 eyes)who u...AIM:To investigate how angles kappa and alpha affect postoperative visual quality in patients with multifocal intraocular lens(mIOLs)implantation.METHODS:Retrospective cases series.A total of 46 patients(46 eyes)who underwent phacoemulsification were subsumed.The correlation between Preoperative angles kappa and alpha,wave-front aberrations and objective visual quality of cornea,internal,and total eye after surgery were analyzed using iTrace.RESULTS:The magnitude of angle kappa was negatively correlated with internal and total modulation transfer function(MTF)at 3 mm;the magnitude of angle kappa was positively correlated with astigmatism,trefoil,higher-order aberrations(HOAs)of both internal and total eye at 3 mm.The magnitude of angle alpha was negatively correlated with total MTF and total Strehl ratio at 3 mm.The magnitude of angle alpha was positively correlated with corneal coma at 5 mm,internal astigmatism at both 3 mm and 5 mm,and total spherical aberration(SA)at 3 mm.Multivariate linear regression analysis showed that,among candidate independent variables(kappa,alpha,astigmatism,SA,coma,trefoil,and HOAs),astigmatism is the only independent factor for altering corneal MTF at 3 mm and 5 mm;astigmatism and HOAs emerged as independent factors for altering internal MTF at 3 mm and 5 mm,and total MTF at 3 mm;astigmatism,SA and HOAs emerged as independent factors for altering total MTF at 5 mm.CONCLUSION:With greater preoperative angle kappa or angle alpha,patients who accept mIOL implantation tend to have larger internal astigmatism and HOAs,which resulting in poor visual quality,especially those with small pupil size.展开更多
The antlions dig a conical simple pit in sand to catch ants.The funnel shape of the trap is deliberate with a critical angle of repose and is steep and shallow enough to trigger avalanches and cause struggling prey to...The antlions dig a conical simple pit in sand to catch ants.The funnel shape of the trap is deliberate with a critical angle of repose and is steep and shallow enough to trigger avalanches and cause struggling prey to fall into the funnel.The trap should be designed by optimizing pit morphology according to natural selection.In the current study,antlion behavior and pit morphology in the sand samples with different particle shapes and particle size distributions were studied.The small larvae build in fine sand and silty sand,while larger ones prefer fine to medium sands.However,there is no preference for sands with different particle shapes.Further,the static and dynamic angles of repose for the sand samples were measured,and the slope of the pits was compared with the repose angles.The angle of the heap slope oscillated between an upper angle or angle of sliding(the angle that triggers a landslide)and a lower angle named repose angle.展开更多
AIM:To explore the effect of Alpha angle and Kappa angle before multifocal intraocular lenses(MIOLs)implantation on postoperative visual quality of patients.METHODS:Before and 3mo after cataract surgery,Alpha angle an...AIM:To explore the effect of Alpha angle and Kappa angle before multifocal intraocular lenses(MIOLs)implantation on postoperative visual quality of patients.METHODS:Before and 3mo after cataract surgery,Alpha angle and Kappa angle were collected using IOL Master 700,iTrace,and Pentacam for clinical observation.Postoperative visual quality indicators,including high-order aberrations(HOA),modulation transfer function(MTF)and point spread function(PSF),were collected using iTrace.multiple linear regression analysis was used to analyze the correlation of the Kappa angle and the Alpha angle with age,axial length(AL),anterior chamber depth(ACD),keratometry(K),lens thickness(LT)and corneal white to white distance(WTW).Pearson correlation coefficient was used to analyze the correlation between Alpha angle and Kappa angle;Bland Altman analysis was used to evaluate the consistency of pairwise detection results of three instruments.RESULTS:The Alpha angle was modeled as Alpha=2.230+0.003×age-0.036×AL-0.025×K-0.058×WTW and the Kappa angle was modeled as Kappa=0.685+0.003×age-0.013×K-0.061×WTW.The correlation between the total Alpha angle and Kappa angle of the three instruments was weakly positive(r=0.291,P=0.000).Comparing the measurement of Alpha angle and Kappa angle using three instruments,only IOL Master 700 and iTrace showed good consistency in measuring Kappa angle(P=0.4254).After 3mo of surgery,the Alpha angle and Kappa angle significantly decreased(P=0.011,0.018;P=0.008,0.036).△Kappa=1.136-0.021×AL-0.013×K.Kappa angle could positively predict HOA(β=0.18,P=0.000),MTF(β=0.171,P=0.000),PSF(β=0.088,P=0.000),Alpha angle cannot(P>0.05).CONCLUSION:The patients with older age,flatter K and shorter WTW should be alert to the possibility of larger Alpha angle and Kappa angle.Alpha angle should also consider the factor of AL.When selecting patients with MIOLs implantation,there is no need to consider the Alpha angle.Careful consideration should be given to the Kappa angle,and the preoperative standard of<0.5 mm can refer to△Kappa=1.136-0.021×AL-0.013×K and be appropriately relaxed.展开更多
AIM:To describe the alterations of the vitreous pathology and anterior chamber(AC)angle structures following transscleral cyclophotocoagulation(TSCP)and better understand the mechanism of post-laser intraocular pressu...AIM:To describe the alterations of the vitreous pathology and anterior chamber(AC)angle structures following transscleral cyclophotocoagulation(TSCP)and better understand the mechanism of post-laser intraocular pressure(IOP)reduction in angle-closure glaucoma(ACG).METHODS:Porcine eyes ex vivo and rabbit eyes in vivo were used.In porcine eyes,permeability rates of the anterior vitreous cortex(AVC)and anterior hyaloid membrane(AHM)were assessed using Schirmer’s strips.Permeability rates in the circumlental space were compared with or without TSCP bursts.Fluorescein diffusion times from the vitreous to the AC were compared between eyes with and without TSCP.In rabbit eyes,changes in IOP and AC angle structures under ultrasound biomicroscopy(UBM)were evaluated at intervals of 30min,7d,and 14d after TSCP.Vitreous pathology was examined using scanning electron microscopy(SEM)immediately and 14d after TSCP.RESULTS:In porcine eyes(n=20),the median(range)permeability rates were 10.3(range 9.8–10.8)mm/min for the AVC and 4.3(range 3.9–4.9)mm/min for the AHM(P=0.009).Permeability rates in the circumlental space were 4.2(range 3.8–4.9)mm/min in areas without TSCP,6.2(range 5.7–6.8)mm/min in areas with non-burst TSCP,and 11.3(range 10.9–11.8)mm/min in areas with burst TSCP(P=0.002).The median(range)fluorescein diffusion time was 5(range 3–8)min in eyes undergoing TSCP,whereas it was 40min(range 35–68)in eyes without TSCP(P<0.001).In rabbit eyes(n=20),SEM showed immediate localized damage to the AHM,AVC,and posterior lens zonules in areas subjected to TSCP bursts,and obvious lens zonule loss with cellular infiltration and possible vitreous liquefaction by post-op day 14.Persistent widening of AC angles was noted at postoperative days 7 and 14,although a significant reduction in IOP was only observed at postoperative day 7.CONCLUSION:TSCP-induced damage on the zonules,AHM,and AVC potentially enhances fluid outflow from the vitreous,leading to a widened AC angle and vitreous liquefaction in rabbits.These observations offer insights into mechanisms of TSCP in lowering IOP and pathogenic roles of vitreous in ACG.展开更多
To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxi...To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxial compression tests.The ejection and failure during compression process of phyllites are monitored in real-time by high-speed camera system.The results demonstrate that the phyllites with different bedding angles all consistently follow the linear energy storage and dissipation(LESD)law during compression.The ultimate energy storage of phyllites with varying bedding angles can be calculated precisely via using the LESD law.Based on this,four kinds of energy-based rockburst indices are applied to quantitatively assess the burst proneness for phyllites.Combined with the recorded images of high-speed camera system,ejection distance,and mass of rock fragments and powder,the burst proneness for phyllites with various bedding angles is qualitatively evaluated adopting the far-field ejection mass ratio.Next,burst proneness of anisotropic phyllites is assessed quantitatively and qualitatively.It is found that phyllites with bedding angles of 0°,15°,and 90°have a high burst proneness,and that with bedding angle of 30°has a medium burst proneness,whereas the ones with bedding angles of 45°,60°,and 75°have a low burst proneness.Finally,the published experimental data of shale and sandstone specimens with different bedding angles are extracted,and it is preliminarily verified that the bedding angle does not change the LESD law of rocks.展开更多
AIM:To identify topographic determinants of the anterior chamber angle(ACA)in patients with keratoconus(KCN).METHODS:Four hundred and ten eyes of 294 patients with KCN were recruited for this study.First,complete ocul...AIM:To identify topographic determinants of the anterior chamber angle(ACA)in patients with keratoconus(KCN).METHODS:Four hundred and ten eyes of 294 patients with KCN were recruited for this study.First,complete ocular examinations were performed for all patients,including visual acuity measurement,refraction,and slit-lamp biomicroscopy.Then,all participants underwent corneal imaging by the Oculus Pentacam HR.RESULTS:The mean age of the participants was 32.40±8.52y(15-60y)and 69.5%of them were male.The mean ACA was 38.47°±5.75°(range:14.40°to 56.50°)in the whole sample,38.24°±6.00°in males,and 38.98°±5.11°in females(P=0.447).The mean ACA was significantly different among different groups of cone morphology,as patients with nipple cones showed the lowest mean ACA.Moreover,there were statistically significant differences in the mean ACA among different groups of cone locations,with patients having central cones exhibiting the lowest mean ACA(P<0.001).Anterior and posterior Q values were significantly,directly correlated with ACA(anterior Q:r=0.122,P=0.014,posterior Q:r=0.192,P<0.001).CONCLUSION:This study provides critical insights into the risk factors for ACA narrowing in KCN patients,which is essential for planning intraocular surgeries.Patients with nipple and central cones exhibited the most significant ACA narrowing.Additionally,more negative Q-values are associated with increased ACA narrowing,highlighting the need for targeted diagnostic and therapeutic strategies.展开更多
Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Deg...Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Degrees-of-Freedom(multi-DOF) and complex flow field structure.In this paper, a special kind of cable-driven parallel mechanism is firstly utilized as a new suspension method to conduct unsteady dynamic wind tunnel tests at high angles of attack, thereby providing experimental aerodynamic data. These tests include a wide range of multi-DOF coupled oscillatory motions with various amplitudes and frequencies. Then, for aerodynamic modeling and analysis, a novel data-driven Feature-Level Attention Recurrent neural network(FLAR) is proposed. This model incorporates a specially designed feature-level attention module that focuses on the state variables affecting the aerodynamic coefficients, thereby enhancing the physical interpretability of the aerodynamic model. Subsequently, spin maneuver simulations, using a mathematical model as the baseline, are conducted to validate the effectiveness of the FLAR. Finally, the results on wind tunnel data reveal that the FLAR accurately predicts aerodynamic coefficients, and observations through the visualization of attention scores identify the key state variables that affect the aerodynamic coefficients. It is concluded that the proposed FLAR enhances the interpretability of the aerodynamic model while achieving good prediction accuracy and generalization capability for multi-DOF coupling motion at high angles of attack.展开更多
To improve the vertical axis wind turbine(VAWT)design,the angle of attack(AOA)and airfoil data must be treated correctly.The present paper develops a method for determining AOA on a VAWT based on computational fluid d...To improve the vertical axis wind turbine(VAWT)design,the angle of attack(AOA)and airfoil data must be treated correctly.The present paper develops a method for determining AOA on a VAWT based on computational fluid dynamics(CFD)analysis.First,a CFD analysis of a two-bladed VAWT equipped with a NACA 0012 airfoil is conducted.The thrust and power coefficients are validated through experiments.Second,the blade force and velocity data at monitoring points are collected.The AOA at different azimuth angles is determined by removing the blade self-induction at the monitoring point.Then,the lift and drag coefficients as a function of AOA are extracted.Results show that this method is independent of the monitoring points selection located at certain distance to the blades and the extracted dynamic stall hysteresis is more precise than the one with the“usual”method without considering the self-induction from bound vortices.展开更多
In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-...In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-dimensional physical simulation experiment regarded as the theoretical research was conducted to properly explore the variation law of overburden fracture.The results demonstrated that the boundary of the gas transport zone was located in the region of fracture separation.The boundary of the gas storage area was located in the abrupt penetration zone.Also,according to the information theory,the state of the gas transport and storage areas was determined by the changing trend of the fracture rate and fracture entropy.The mathematical representation model of the dip effect in gas transport and storage areas was established.The criteria upon which the regional location of the gas transport area and gas storage area can be based were put forward.The cross-fusion evolution process of the dip effect in gas transport and storage areas was revealed as well.The research results could provide guidance for realising directional and accurate gas extraction.展开更多
Angle of Attack(AOA) is a crucial parameter which directly affects the aerodynamic forces of an aircraft.The measurement of AOA is required to ensure a safe flight within its designed flight envelop.This paper intends...Angle of Attack(AOA) is a crucial parameter which directly affects the aerodynamic forces of an aircraft.The measurement of AOA is required to ensure a safe flight within its designed flight envelop.This paper intends to summarise a comprehensive survey on the measurement techniques and estimation methods for AOA, specifically in Unmanned Aerial Vehicle(UAV) applications.In the case of UAVs, weight constraint plays a major role as far as sensor suites are concerned.This results in selecting a suitable estimation method to extract AOA using the available data from the autopilot.The most feasible and widely employed AOA measurement technique is by using the Multi-Hole Probes(MHPs).The MHP measures the AOA regarding the pressure variations between the ports.Due to the importance of MHP in AOA measurement, the calibration methods for the MHP are also included in this paper.This paper discusses the AOA measurement using virtual AOA sensors, their importance and the operation.展开更多
Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements u...Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements using a protractor.Terrestrial laser scanning(TLS),however,provides new opportunities to measure branch angles more efficiently.Despite this potential,studies validating branch angle measurements from TLS have been limited.Here,our aim is to evaluate both manual and automatic branch angle measurements of European beech from TLS data using traditional field-measurements with a protractor as a reference.We evaluated the accuracy of branch angle measurements based on four automated algorithms(aRchiQSM,TreeQSM,Laplacian,SemanticLaplacian)from TLS data.Additionally,we assessed different ways of manual branch angle measurements in the field.Our study was based on a dataset comprising 124 branch angles measured from six European beech in a European deciduous forest.Our results show that manual branch angle measurements from TLS data are in high agreement with the reference(root-mean-squared error,RMSE:[3.57°-4.18°],concordance correlation coefficient,CCC:[0.950.97])across different branch length positions.Automated algorithms also are in high agreement with the reference although RMSE is approximately twice as large compared to manual branch angle measurements from TLS(RMSE:[9.29°-10.55°],CCC:[0.830.86])with manual leaf points removal.When applying the automatic wood-leaf separation algorithm,the performance of the four methods declined significantly,with only approximately 20 branch angles successfully identified.Moreover,it is important to note that there is no influence of the measurement position(branch surface versus center)for branch angle measurements.However,for curved branches,the selection of branch measurement length significantly impacts the branch angle measurement.This study provides a comprehensive understanding of branch angle measurements in forests.We show that automated measurement methods based on TLS data of branch angles are a valuable tool to quantify branch angles at larger scales.展开更多
Endodermal cells and starch-accumulating amyloplasts are well-known gravity sensors initiating shoot gravitropism in Arabidopsis thaliana.The transcription factors SHR and SGR1 regulate endodermal cell formation,while...Endodermal cells and starch-accumulating amyloplasts are well-known gravity sensors initiating shoot gravitropism in Arabidopsis thaliana.The transcription factors SHR and SGR1 regulate endodermal cell formation,while PGM has been demonstrated to regulate starch biosynthesis within chloroplasts,which eventually leads to starch accumulation in amyloplasts.However,the molecular mechanisms of gravity sensing in monocot shoots remain largely unexplored.In this study,we investigated the roles of these genes in rice(Oryza sativa),a model monocot,using CRISPR-Cas9 to generate single,double,and higher-order mutants.The rice genome harbors two orthologs each of SHR and SGR and a single ortholog of PGM.Our results revealed that single mutants of OsPGM,but not OsSHR or OsSGR,showed compromised shoot gravitropism.However,double mutants shr1shr2 and sgr1sgr2 displayed wider tiller angles and reduced gravity sensing,suggesting functional redundancy within each gene pair.Higher-order mutants exhibited progressively severe phenotypes,with quintuple mutants almost unresponsive to gravity stimulation.These findings suggest that these genes act additively through distinct but converging pathways in shoot gravitropism regulation.This study provides novel insights into the molecular mechanisms underlying gravity sensing in monocots and offers valuable knowledge for precision breeding to optimize rice architecture.展开更多
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr...The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.展开更多
This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and lo...This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.展开更多
Ceramic cores fabricated by stereolithography exhibit great potential in casting turbine blades.Previous research on ceramic core molding was primarily conducted using vertical printing techniques,which not only resul...Ceramic cores fabricated by stereolithography exhibit great potential in casting turbine blades.Previous research on ceramic core molding was primarily conducted using vertical printing techniques,which not only resulted in lengthy molding durations but also compromised the mechanical strength.In this work,silica(SiO--_2)ceramic cores,with fine complex geometric shapes,were fabricated using 65vol.%ceramic slurry by digital light processing(DLP)with different printing angles.Printing angles significantly impact the surface accuracy,shrinkage,printing efficiency of green bodies,as well as the microstructure and mechanical properties of sintered ceramic core samples.As the printing angle in the green body increases,the bonding area decreases,surface roughness on the XY plane worsens,shrinkage in the Z direction becomes more pronounced,and the printing efficiency declines.Similarly,an increase in the printing angle in the sintered body leads to a reduction in bending strength.At a printing angle of 30°,the printing time is reduced to half of that at 90°,which improves the molding efficiency.Meanwhile,the obtained bulk density of 1.71 g·cm~(-3),open porosity of 24%,and fiexural strength of 10.6±1 MPa can meet the requirements of sintered ceramic cores.Therefore,designing and optimizing the printing angles can achieve the balance between shrinkage,printing efficiency,and fiexural strength.展开更多
The marine propeller typically functions within thefilowfiield generated by a water vehicle.Investigations into the geometric parameters of the propeller are commonly conducted under open‑water conditions as simultane...The marine propeller typically functions within thefilowfiield generated by a water vehicle.Investigations into the geometric parameters of the propeller are commonly conducted under open‑water conditions as simultaneously simulating both vehicle and propeller holds several computational challenges.While during operation,this propellant device must face several forces like gravity,hydrodynamic load,and centrifugal force,which cause different problems like cavitation and structural failure,etc.Since these issues affect performance,it necessitates comprehensive analysis.In this study,hydrodynamic analysis is performed by using commercial software STAR CCM+.In hydrodynamic analysis,the effect of the rake angles–5°,5°,10°and 15°on hydrodynamic coeffiicients and effiiciency of the DTMB 4119 in the open water is analyzed using Computational Fluid Dynamics(CFD)and the control volume approach.The Shear Stress Transport(SST)k‑ωturbulence model is used in Computational Fluid Dynamics(CFD)simulation.Hydrodynamic analysis reveals that the rake angles 5°and 10°cause the open water effiiciency of David Taylor Model Basin(DTMB)4119 to improve by 0.4 to 1.32%with exception of the rake angles–5°and 15°,which possess different effects on effiiciency.The angle–5°causes a decrease in propeller effiiciency under heavy loading situations(low advance coeffiicient)apart from a minorfiluctuation at light loading conditions(high advance coeffiicient),while the angle 15°produces a drop in effiiciency by higher advance ratios but little variation at lower advance ratios.展开更多
文摘Installing internal bulkheads in a composite bucket foundation alters the rotational symmetry characteristic of a single-compartment bucket foundation,consequently influencing the stress distribution within the bucket and surrounding soil.During the seabed penetration of a spudcan from a jack-up wind turbine installation vessel,an angle may form between the spudcan’s axis and the axis of symmetry of the adjacent composite bucket foundation in the horizontal plane.Such a misalignment may affect load distribution and the non-uniform interaction between the foundation,soil,and spudcan,ultimately influencing the foundation’s stability.This study employs physical model tests to ascertain the trends in end resistance during spudcan penetration in sand,the extent of soil disturbance,and the backflow condition.The finite element coupled Eulerian-Lagrangian method is validated and utilized to determine the range of penetration angles that induce alterations in the maximum vertical displacement and tilt rate of the composite bucket foundation in sand.The differential contact stress distribution at the base of the bucket is analyzed,with qualitative criteria for sand backflow provided.Findings demonstrate that the maximum vertical displacement and tilt rate of the composite bucket foundation display a“wave-like”variation with the increasing spudcan penetration angle,peaking when the angle between the spudcan and bulkhead is the smallest.Stress distribution is predominantly concentrated at the base and apex of the bucket,becoming increasingly uneven as the penetration angle deviates from the foundation’s symmetry axis.The maximum stress gradually shifts to the junction of the bulkhead and bucket bottom on the side with the shortest net distance from the spudcan.Considering the in-place stability and stress state of the composite bucket foundation is therefore imperative,and particular attention should be paid to the foundation’s state when the angle between the spudcan and bulkhead is small.
文摘AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longitudinal observational study,detailed medical histories of APAC patients and comprehensive ophthalmic examinations at final followup were collected.Logistic regression analysis was performed to identify predictors of blindness.Univariate and multivariate linear regression analyses were conducted to determine risk factors associated with visual outcomes.RESULTS:This study included 39 affected eyes of 31 subjects(26 females)with an average age of 74.1±8.0y.At 6.7±4.2y after APAC attack,2(5.7%)eyes had bestcorrected visual acuity(VA)worse than 3/60.Advanced glaucomatous visual field loss was observed in 15(39.5%)affected eyes and 5(25.0%)fellow eyes.Nine affected eyes(23.7%)had GON,and 11(28.9%)were blind.Six(15.4%)affected eyes and 2(9.1%)fellow eyes had suspicious progression.A significantly higher blindness rate in factory workers compared to office workers.Logistic regression identified that worse VA at attack(OR 10.568,95%CI 1.288-86.695;P=0.028)and worse early postoperative VA(OR 13.214,95%CI 1.157-150.881;P=0.038)were risk factors for blindness.Multivariate regression showed that longer duration of elevated intraocular pressure(P=0.004)and worse early postoperative VA(P=0.009)were associated with worse visual outcomes.CONCLUSION:Despite LE surgery,some APAC patients experience continued visual function deterioration.Lifelong monitoring is necessary.Target pressure and progression rates should be re-evaluated during follow-up.
基金Supported by National Natural Science Foundation of China(No.82260203).
文摘AIM:To study the relationships between amplitude of low-frequency fluctuations(ALFF)changes and clinical ophthalmic parameters in patients with primary open angle glaucoma(POAG)and analyze the diagnostic value of ALFF.METHODS:Twenty-four POAG patients and 24 healthy controls(HCs)underwent resting-state functional magnetic resonance imaging(rs-fMRI).Nonparametric rank-sum tests were used to compare the ALFF values in the slow-4 and slow-5 bands,and Spearman or Pearson correlation analysis was used to assess the correlation between ALFF changes and clinical ophthalmic parameters in POAG patients.Receiver operating characteristic(ROC)curves were used to evaluate the diagnostic performance of the ALFF.RESULTS:There were 16 males in POAG patients(median age 48y)and 12 males in HCs(median age 39y).Compared with HCs,POAG patients presented increased or decreased ALFF values in different brain regions,and similar changes were observed in mild POAG patients.The ALFF values were correlated with retinal nerve fiber layer(RNFL)thickness,inner limiting membrane-retinal pigment epithelium thickness changes and the degree of visual field defects.Analysis of the diagnostic value of the ALFF via ROC curves revealed that the right medial frontal gyrus[area under the curve(AUC)=0.9063]and superior frontal gyrus(AUC=0.9097)had better diagnostic value than did the optic disc area(AUC=0.8019),visual field index(VFI%,AUC=0.8988)and macular parameters.CONCLUSION:POAG patients present altered cortical function that is significantly correlated with the optic nerve and retinal thickness and had good diagnostic value,which may reflect the underlying neuropathological mechanism of POAG.
文摘AIM:To investigate how angles kappa and alpha affect postoperative visual quality in patients with multifocal intraocular lens(mIOLs)implantation.METHODS:Retrospective cases series.A total of 46 patients(46 eyes)who underwent phacoemulsification were subsumed.The correlation between Preoperative angles kappa and alpha,wave-front aberrations and objective visual quality of cornea,internal,and total eye after surgery were analyzed using iTrace.RESULTS:The magnitude of angle kappa was negatively correlated with internal and total modulation transfer function(MTF)at 3 mm;the magnitude of angle kappa was positively correlated with astigmatism,trefoil,higher-order aberrations(HOAs)of both internal and total eye at 3 mm.The magnitude of angle alpha was negatively correlated with total MTF and total Strehl ratio at 3 mm.The magnitude of angle alpha was positively correlated with corneal coma at 5 mm,internal astigmatism at both 3 mm and 5 mm,and total spherical aberration(SA)at 3 mm.Multivariate linear regression analysis showed that,among candidate independent variables(kappa,alpha,astigmatism,SA,coma,trefoil,and HOAs),astigmatism is the only independent factor for altering corneal MTF at 3 mm and 5 mm;astigmatism and HOAs emerged as independent factors for altering internal MTF at 3 mm and 5 mm,and total MTF at 3 mm;astigmatism,SA and HOAs emerged as independent factors for altering total MTF at 5 mm.CONCLUSION:With greater preoperative angle kappa or angle alpha,patients who accept mIOL implantation tend to have larger internal astigmatism and HOAs,which resulting in poor visual quality,especially those with small pupil size.
文摘The antlions dig a conical simple pit in sand to catch ants.The funnel shape of the trap is deliberate with a critical angle of repose and is steep and shallow enough to trigger avalanches and cause struggling prey to fall into the funnel.The trap should be designed by optimizing pit morphology according to natural selection.In the current study,antlion behavior and pit morphology in the sand samples with different particle shapes and particle size distributions were studied.The small larvae build in fine sand and silty sand,while larger ones prefer fine to medium sands.However,there is no preference for sands with different particle shapes.Further,the static and dynamic angles of repose for the sand samples were measured,and the slope of the pits was compared with the repose angles.The angle of the heap slope oscillated between an upper angle or angle of sliding(the angle that triggers a landslide)and a lower angle named repose angle.
基金Supported by National Natural Science Foundation of China(No.81902751).
文摘AIM:To explore the effect of Alpha angle and Kappa angle before multifocal intraocular lenses(MIOLs)implantation on postoperative visual quality of patients.METHODS:Before and 3mo after cataract surgery,Alpha angle and Kappa angle were collected using IOL Master 700,iTrace,and Pentacam for clinical observation.Postoperative visual quality indicators,including high-order aberrations(HOA),modulation transfer function(MTF)and point spread function(PSF),were collected using iTrace.multiple linear regression analysis was used to analyze the correlation of the Kappa angle and the Alpha angle with age,axial length(AL),anterior chamber depth(ACD),keratometry(K),lens thickness(LT)and corneal white to white distance(WTW).Pearson correlation coefficient was used to analyze the correlation between Alpha angle and Kappa angle;Bland Altman analysis was used to evaluate the consistency of pairwise detection results of three instruments.RESULTS:The Alpha angle was modeled as Alpha=2.230+0.003×age-0.036×AL-0.025×K-0.058×WTW and the Kappa angle was modeled as Kappa=0.685+0.003×age-0.013×K-0.061×WTW.The correlation between the total Alpha angle and Kappa angle of the three instruments was weakly positive(r=0.291,P=0.000).Comparing the measurement of Alpha angle and Kappa angle using three instruments,only IOL Master 700 and iTrace showed good consistency in measuring Kappa angle(P=0.4254).After 3mo of surgery,the Alpha angle and Kappa angle significantly decreased(P=0.011,0.018;P=0.008,0.036).△Kappa=1.136-0.021×AL-0.013×K.Kappa angle could positively predict HOA(β=0.18,P=0.000),MTF(β=0.171,P=0.000),PSF(β=0.088,P=0.000),Alpha angle cannot(P>0.05).CONCLUSION:The patients with older age,flatter K and shorter WTW should be alert to the possibility of larger Alpha angle and Kappa angle.Alpha angle should also consider the factor of AL.When selecting patients with MIOLs implantation,there is no need to consider the Alpha angle.Careful consideration should be given to the Kappa angle,and the preoperative standard of<0.5 mm can refer to△Kappa=1.136-0.021×AL-0.013×K and be appropriately relaxed.
基金Supported by National Natural Science Foundation of China(No.82201171,No.82171050,No.82471072).
文摘AIM:To describe the alterations of the vitreous pathology and anterior chamber(AC)angle structures following transscleral cyclophotocoagulation(TSCP)and better understand the mechanism of post-laser intraocular pressure(IOP)reduction in angle-closure glaucoma(ACG).METHODS:Porcine eyes ex vivo and rabbit eyes in vivo were used.In porcine eyes,permeability rates of the anterior vitreous cortex(AVC)and anterior hyaloid membrane(AHM)were assessed using Schirmer’s strips.Permeability rates in the circumlental space were compared with or without TSCP bursts.Fluorescein diffusion times from the vitreous to the AC were compared between eyes with and without TSCP.In rabbit eyes,changes in IOP and AC angle structures under ultrasound biomicroscopy(UBM)were evaluated at intervals of 30min,7d,and 14d after TSCP.Vitreous pathology was examined using scanning electron microscopy(SEM)immediately and 14d after TSCP.RESULTS:In porcine eyes(n=20),the median(range)permeability rates were 10.3(range 9.8–10.8)mm/min for the AVC and 4.3(range 3.9–4.9)mm/min for the AHM(P=0.009).Permeability rates in the circumlental space were 4.2(range 3.8–4.9)mm/min in areas without TSCP,6.2(range 5.7–6.8)mm/min in areas with non-burst TSCP,and 11.3(range 10.9–11.8)mm/min in areas with burst TSCP(P=0.002).The median(range)fluorescein diffusion time was 5(range 3–8)min in eyes undergoing TSCP,whereas it was 40min(range 35–68)in eyes without TSCP(P<0.001).In rabbit eyes(n=20),SEM showed immediate localized damage to the AHM,AVC,and posterior lens zonules in areas subjected to TSCP bursts,and obvious lens zonule loss with cellular infiltration and possible vitreous liquefaction by post-op day 14.Persistent widening of AC angles was noted at postoperative days 7 and 14,although a significant reduction in IOP was only observed at postoperative day 7.CONCLUSION:TSCP-induced damage on the zonules,AHM,and AVC potentially enhances fluid outflow from the vitreous,leading to a widened AC angle and vitreous liquefaction in rabbits.These observations offer insights into mechanisms of TSCP in lowering IOP and pathogenic roles of vitreous in ACG.
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxial compression tests.The ejection and failure during compression process of phyllites are monitored in real-time by high-speed camera system.The results demonstrate that the phyllites with different bedding angles all consistently follow the linear energy storage and dissipation(LESD)law during compression.The ultimate energy storage of phyllites with varying bedding angles can be calculated precisely via using the LESD law.Based on this,four kinds of energy-based rockburst indices are applied to quantitatively assess the burst proneness for phyllites.Combined with the recorded images of high-speed camera system,ejection distance,and mass of rock fragments and powder,the burst proneness for phyllites with various bedding angles is qualitatively evaluated adopting the far-field ejection mass ratio.Next,burst proneness of anisotropic phyllites is assessed quantitatively and qualitatively.It is found that phyllites with bedding angles of 0°,15°,and 90°have a high burst proneness,and that with bedding angle of 30°has a medium burst proneness,whereas the ones with bedding angles of 45°,60°,and 75°have a low burst proneness.Finally,the published experimental data of shale and sandstone specimens with different bedding angles are extracted,and it is preliminarily verified that the bedding angle does not change the LESD law of rocks.
基金Supported by Iranian University of Medical Sciences(code:IR.IUMS.REC.1401.371).
文摘AIM:To identify topographic determinants of the anterior chamber angle(ACA)in patients with keratoconus(KCN).METHODS:Four hundred and ten eyes of 294 patients with KCN were recruited for this study.First,complete ocular examinations were performed for all patients,including visual acuity measurement,refraction,and slit-lamp biomicroscopy.Then,all participants underwent corneal imaging by the Oculus Pentacam HR.RESULTS:The mean age of the participants was 32.40±8.52y(15-60y)and 69.5%of them were male.The mean ACA was 38.47°±5.75°(range:14.40°to 56.50°)in the whole sample,38.24°±6.00°in males,and 38.98°±5.11°in females(P=0.447).The mean ACA was significantly different among different groups of cone morphology,as patients with nipple cones showed the lowest mean ACA.Moreover,there were statistically significant differences in the mean ACA among different groups of cone locations,with patients having central cones exhibiting the lowest mean ACA(P<0.001).Anterior and posterior Q values were significantly,directly correlated with ACA(anterior Q:r=0.122,P=0.014,posterior Q:r=0.192,P<0.001).CONCLUSION:This study provides critical insights into the risk factors for ACA narrowing in KCN patients,which is essential for planning intraocular surgeries.Patients with nipple and central cones exhibited the most significant ACA narrowing.Additionally,more negative Q-values are associated with increased ACA narrowing,highlighting the need for targeted diagnostic and therapeutic strategies.
基金supported by the National Natural Science Foundation of China(Nos.12172315,12072304,11702232)the Fujian Provincial Natural Science Foundation,China(No.2021J01050)the Aeronautical Science Foundation of China(No.20220013068002).
文摘Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Degrees-of-Freedom(multi-DOF) and complex flow field structure.In this paper, a special kind of cable-driven parallel mechanism is firstly utilized as a new suspension method to conduct unsteady dynamic wind tunnel tests at high angles of attack, thereby providing experimental aerodynamic data. These tests include a wide range of multi-DOF coupled oscillatory motions with various amplitudes and frequencies. Then, for aerodynamic modeling and analysis, a novel data-driven Feature-Level Attention Recurrent neural network(FLAR) is proposed. This model incorporates a specially designed feature-level attention module that focuses on the state variables affecting the aerodynamic coefficients, thereby enhancing the physical interpretability of the aerodynamic model. Subsequently, spin maneuver simulations, using a mathematical model as the baseline, are conducted to validate the effectiveness of the FLAR. Finally, the results on wind tunnel data reveal that the FLAR accurately predicts aerodynamic coefficients, and observations through the visualization of attention scores identify the key state variables that affect the aerodynamic coefficients. It is concluded that the proposed FLAR enhances the interpretability of the aerodynamic model while achieving good prediction accuracy and generalization capability for multi-DOF coupling motion at high angles of attack.
文摘To improve the vertical axis wind turbine(VAWT)design,the angle of attack(AOA)and airfoil data must be treated correctly.The present paper develops a method for determining AOA on a VAWT based on computational fluid dynamics(CFD)analysis.First,a CFD analysis of a two-bladed VAWT equipped with a NACA 0012 airfoil is conducted.The thrust and power coefficients are validated through experiments.Second,the blade force and velocity data at monitoring points are collected.The AOA at different azimuth angles is determined by removing the blade self-induction at the monitoring point.Then,the lift and drag coefficients as a function of AOA are extracted.Results show that this method is independent of the monitoring points selection located at certain distance to the blades and the extracted dynamic stall hysteresis is more precise than the one with the“usual”method without considering the self-induction from bound vortices.
基金supported by the National Natural Science Foundation of China(No.5217-4205)Shaanxi Provincial Outstanding Youth Science Fund Project(No.2023-JC-JQ-40)+4 种基金National Key Research and Development Project(No.2023YFC3009004)Key Project of Shaanxi Provincial Department of Education(No.22JY040)Xinjiang Uygur Autonomous Region Key Research and Development Task Special Project(No.2022B01034-3)Key Laboratory of Green Coal Mining in Xinjiang,Ministry of Education(No.KLXGY-KA2404)Shaanxi Provincial Key Research and Development Task General Project(No.2024GX–YBXM-490)。
文摘In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-dimensional physical simulation experiment regarded as the theoretical research was conducted to properly explore the variation law of overburden fracture.The results demonstrated that the boundary of the gas transport zone was located in the region of fracture separation.The boundary of the gas storage area was located in the abrupt penetration zone.Also,according to the information theory,the state of the gas transport and storage areas was determined by the changing trend of the fracture rate and fracture entropy.The mathematical representation model of the dip effect in gas transport and storage areas was established.The criteria upon which the regional location of the gas transport area and gas storage area can be based were put forward.The cross-fusion evolution process of the dip effect in gas transport and storage areas was revealed as well.The research results could provide guidance for realising directional and accurate gas extraction.
基金the financial support of the Aeronautical Research&Development Board(AR&DB)through the SIGMA Panel for sanctioning the project ID number ARDB/01/2021791/M/I。
文摘Angle of Attack(AOA) is a crucial parameter which directly affects the aerodynamic forces of an aircraft.The measurement of AOA is required to ensure a safe flight within its designed flight envelop.This paper intends to summarise a comprehensive survey on the measurement techniques and estimation methods for AOA, specifically in Unmanned Aerial Vehicle(UAV) applications.In the case of UAVs, weight constraint plays a major role as far as sensor suites are concerned.This results in selecting a suitable estimation method to extract AOA using the available data from the autopilot.The most feasible and widely employed AOA measurement technique is by using the Multi-Hole Probes(MHPs).The MHP measures the AOA regarding the pressure variations between the ports.Due to the importance of MHP in AOA measurement, the calibration methods for the MHP are also included in this paper.This paper discusses the AOA measurement using virtual AOA sensors, their importance and the operation.
基金supported by the Chinese Scholarship Council under Grant 202106910006.
文摘Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements using a protractor.Terrestrial laser scanning(TLS),however,provides new opportunities to measure branch angles more efficiently.Despite this potential,studies validating branch angle measurements from TLS have been limited.Here,our aim is to evaluate both manual and automatic branch angle measurements of European beech from TLS data using traditional field-measurements with a protractor as a reference.We evaluated the accuracy of branch angle measurements based on four automated algorithms(aRchiQSM,TreeQSM,Laplacian,SemanticLaplacian)from TLS data.Additionally,we assessed different ways of manual branch angle measurements in the field.Our study was based on a dataset comprising 124 branch angles measured from six European beech in a European deciduous forest.Our results show that manual branch angle measurements from TLS data are in high agreement with the reference(root-mean-squared error,RMSE:[3.57°-4.18°],concordance correlation coefficient,CCC:[0.950.97])across different branch length positions.Automated algorithms also are in high agreement with the reference although RMSE is approximately twice as large compared to manual branch angle measurements from TLS(RMSE:[9.29°-10.55°],CCC:[0.830.86])with manual leaf points removal.When applying the automatic wood-leaf separation algorithm,the performance of the four methods declined significantly,with only approximately 20 branch angles successfully identified.Moreover,it is important to note that there is no influence of the measurement position(branch surface versus center)for branch angle measurements.However,for curved branches,the selection of branch measurement length significantly impacts the branch angle measurement.This study provides a comprehensive understanding of branch angle measurements in forests.We show that automated measurement methods based on TLS data of branch angles are a valuable tool to quantify branch angles at larger scales.
基金supported by grants from the Biological Breeding-National Science and Technology Major Project(2024ZD04077)the National Natural Science Foundation of China(31801323)+1 种基金the Innovation Program of the Chinese Academy of Agricultural Sciencesthe Science and Technology Innovation Project of the Shandong Academy of Agricultural Sciences(CXGC2023F14)。
文摘Endodermal cells and starch-accumulating amyloplasts are well-known gravity sensors initiating shoot gravitropism in Arabidopsis thaliana.The transcription factors SHR and SGR1 regulate endodermal cell formation,while PGM has been demonstrated to regulate starch biosynthesis within chloroplasts,which eventually leads to starch accumulation in amyloplasts.However,the molecular mechanisms of gravity sensing in monocot shoots remain largely unexplored.In this study,we investigated the roles of these genes in rice(Oryza sativa),a model monocot,using CRISPR-Cas9 to generate single,double,and higher-order mutants.The rice genome harbors two orthologs each of SHR and SGR and a single ortholog of PGM.Our results revealed that single mutants of OsPGM,but not OsSHR or OsSGR,showed compromised shoot gravitropism.However,double mutants shr1shr2 and sgr1sgr2 displayed wider tiller angles and reduced gravity sensing,suggesting functional redundancy within each gene pair.Higher-order mutants exhibited progressively severe phenotypes,with quintuple mutants almost unresponsive to gravity stimulation.These findings suggest that these genes act additively through distinct but converging pathways in shoot gravitropism regulation.This study provides novel insights into the molecular mechanisms underlying gravity sensing in monocots and offers valuable knowledge for precision breeding to optimize rice architecture.
基金Projects(51979268,52279117,52309146)supported by the National Natural Science Foundation of ChinaProject(SKLGME-JBGS2401)supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.
基金supported by the National Natural Science Foundation of China(61903099)the Natural Science Foundation of Heilongjiang Province(LH2020F025)+2 种基金the Project of Science and Technology Research Program of Chongqing Education Commission of China(KJZD-K20200470)the Postdoctoral Science Foundation of China(2021M690812)the Postdoctoral Science Fund of Heilongjiang Province(LBH-Z21048).
文摘This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.
基金the Youth Innovation Promotion Association of Chinese Academy of Science(No.2021160)the National Natural Science Foundation of China(No.51802319)the Technology and Engineering Center for Space(No.CSU-QZKT-2019-04)。
文摘Ceramic cores fabricated by stereolithography exhibit great potential in casting turbine blades.Previous research on ceramic core molding was primarily conducted using vertical printing techniques,which not only resulted in lengthy molding durations but also compromised the mechanical strength.In this work,silica(SiO--_2)ceramic cores,with fine complex geometric shapes,were fabricated using 65vol.%ceramic slurry by digital light processing(DLP)with different printing angles.Printing angles significantly impact the surface accuracy,shrinkage,printing efficiency of green bodies,as well as the microstructure and mechanical properties of sintered ceramic core samples.As the printing angle in the green body increases,the bonding area decreases,surface roughness on the XY plane worsens,shrinkage in the Z direction becomes more pronounced,and the printing efficiency declines.Similarly,an increase in the printing angle in the sintered body leads to a reduction in bending strength.At a printing angle of 30°,the printing time is reduced to half of that at 90°,which improves the molding efficiency.Meanwhile,the obtained bulk density of 1.71 g·cm~(-3),open porosity of 24%,and fiexural strength of 10.6±1 MPa can meet the requirements of sintered ceramic cores.Therefore,designing and optimizing the printing angles can achieve the balance between shrinkage,printing efficiency,and fiexural strength.
文摘The marine propeller typically functions within thefilowfiield generated by a water vehicle.Investigations into the geometric parameters of the propeller are commonly conducted under open‑water conditions as simultaneously simulating both vehicle and propeller holds several computational challenges.While during operation,this propellant device must face several forces like gravity,hydrodynamic load,and centrifugal force,which cause different problems like cavitation and structural failure,etc.Since these issues affect performance,it necessitates comprehensive analysis.In this study,hydrodynamic analysis is performed by using commercial software STAR CCM+.In hydrodynamic analysis,the effect of the rake angles–5°,5°,10°and 15°on hydrodynamic coeffiicients and effiiciency of the DTMB 4119 in the open water is analyzed using Computational Fluid Dynamics(CFD)and the control volume approach.The Shear Stress Transport(SST)k‑ωturbulence model is used in Computational Fluid Dynamics(CFD)simulation.Hydrodynamic analysis reveals that the rake angles 5°and 10°cause the open water effiiciency of David Taylor Model Basin(DTMB)4119 to improve by 0.4 to 1.32%with exception of the rake angles–5°and 15°,which possess different effects on effiiciency.The angle–5°causes a decrease in propeller effiiciency under heavy loading situations(low advance coeffiicient)apart from a minorfiluctuation at light loading conditions(high advance coeffiicient),while the angle 15°produces a drop in effiiciency by higher advance ratios but little variation at lower advance ratios.